Дом

блог

ПРИЛОЖЕНИЯ

  • Исследование характера дрейфа инструментальных констант гироскопеодолита в зависимости от температуры
    Исследование характера дрейфа инструментальных констант гироскопеодолита в зависимости от температуры Jan 14, 2025
    Ключевые моментыПродукт: Чистая инерциальная навигационная система (ИНС) на базе IMU.Ключевые особенности:Компоненты: Использует акселерометры и гироскопы MEMS для измерения ускорения и угловой скорости в реальном времени.Функция: объединяет данные начального положения и ориентации с измерениями IMU для расчета положения и ориентации в реальном времени.Применение: Идеально подходит для внутренней навигации, аэрокосмической промышленности, автономных систем и робототехники.Проблемы: устраняет ошибки датчиков, совокупный дрейф и динамические воздействия окружающей среды с помощью методов калибровки и фильтрации.Вывод: Обеспечивает точное позиционирование в сложных условиях с высокой производительностью в сочетании со вспомогательными системами позиционирования, такими как GPS. Закон дрейфа постоянной прибора с температурой гиротеодолита представляет собой сложное явление, которое предполагает взаимодействие множества компонентов и систем внутри прибора. Постоянная прибора относится к эталонному значению измерения гиротеодолита в определенных условиях. Крайне важно обеспечить точность и стабильность измерений.Изменения температуры вызовут дрейф констант прибора, главным образом потому, что различия в коэффициентах теплового расширения материалов вызывают изменения в конструкции прибора, а характеристики электронных компонентов изменяются при изменении температуры. Эта картина дрейфа часто бывает нелинейной, поскольку разные материалы и компоненты по-разному реагируют на температуру.Для изучения дрейфа инструментальных констант гиротеодолита с температурой обычно требуется серия экспериментов и анализ данных. Сюда входит калибровка и измерение прибора при различных температурах, запись изменений констант прибора и анализ взаимосвязи между температурой и константами прибора.Путем анализа экспериментальных данных можно обнаружить тенденцию изменения констант прибора в зависимости от температуры и попытаться создать математическую модель для описания этой зависимости. Такие модели могут быть основаны на линейной регрессии, полиномиальной аппроксимации или других статистических методах и используются для прогнозирования и компенсации дрейфа констант прибора при различных температурах.Понимание дрейфа инструментальных констант гиротеодолита в зависимости от температуры очень важно для повышения точности и стабильности измерений. Принимая соответствующие компенсационные меры, такие как контроль температуры, калибровка и обработка данных, можно уменьшить влияние температуры на константы прибора, тем самым улучшая характеристики измерения гиротеодолита.Следует отметить, что конкретные правила дрейфа и методы компенсации могут различаться в зависимости от разных моделей гиротеодолитов и сценариев применения. Следовательно, в практическом применении соответствующие меры необходимо изучать и реализовывать в соответствии с конкретными ситуациями.Исследование закономерностей дрейфа инструментальных констант гиротеодолита в зависимости от температуры обычно предполагает контроль и анализ работы прибора в различных температурных режимах.Цель таких исследований — понять, как изменения температуры влияют на инструментальные константы гиротеодолита и, возможно, найти способ компенсировать или скорректировать это температурное влияние.Инструментальные константы обычно относятся к собственным свойствам инструмента в определенных условиях, таких как стандартная температура. Для гиротеодолита константы прибора могут быть связаны с точностью его измерений, стабильностью и т. д.При изменении температуры окружающей среды свойства материала, механическая структура и т. д. внутри прибора могут измениться, что повлияет на константы прибора.Для изучения этой картины дрейфа обычно требуются следующие шаги:Выберите диапазон различных температурных точек, чтобы охватить рабочие среды, с которыми может столкнуться гироскопический теодолит.Проведите несколько направленных измерений в каждой температурной точке, чтобы получить достаточные выборки данных.Анализируйте данные и наблюдайте за изменением констант прибора в зависимости от температуры.Попробуйте построить математическую модель для описания этой взаимосвязи, например линейную регрессию, полиномиальную аппроксимацию и т. д.Используйте эту модель для прогнозирования констант прибора при различных температурах и, возможно, разработки методов компенсации температурных эффектов.Математическая модель может выглядеть так:К(Т) = а + б × Т + с × Т^2 + …Среди них K(T) — постоянная прибора при температуре T, а a, b, c и т. д. — коэффициенты, которые необходимо подобрать.Такого рода исследования имеют большое значение для улучшения характеристик гиротеодолита в различных условиях окружающей среды.Следует отметить, что конкретные методы исследования и математические модели могут различаться в зависимости от конкретных моделей приборов и сценариев применения.Подвести итогЗакон дрейфа постоянной прибора с температурой гиротеодолита представляет собой сложное явление, которое предполагает взаимодействие множества компонентов и систем внутри прибора. Постоянная прибора относится к эталонному значению измерения гиротеодолита в определенных условиях. Крайне важно обеспечить точность и стабильность измерений.Изменения температуры вызовут дрейф констант прибора, главным образом потому, что различия в коэффициентах теплового расширения материалов вызывают изменения в конструкции прибора, а характеристики электронных компонентов изменяются при изменении температуры. Эта картина дрейфа часто бывает нелинейной, поскольку разные материалы и компоненты по-разному реагируют на температуру.Для изучения дрейфа инструментальных констант гиротеодолита с температурой обычно требуется серия экспериментов и анализ данных. Сюда входит калибровка и измерение прибора при различных температурах, запись изменений констант прибора и анализ взаимосвязи между температурой и константами прибора.Путем анализа экспериментальных данных можно обнаружить тенденцию изменения констант прибора в зависимости от температуры и попытаться создать математическую модель для описания этой зависимости. Такие модели могут быть основаны на линейной регрессии, полиномиальной аппроксимации или других статистических методах и используются для прогнозирования и компенсации дрейфа констант прибора при различных температурах.Понимание дрейфа инструментальных констант гиротеодолита в зависимости от температуры очень важно для повышения точности и стабильности измерений. Принимая соответствующие компенсационные меры, такие как контроль температуры, калибровка и обработка данных, можно уменьшить влияние температуры на константы прибора, тем самым улучшая характеристики измерения гиротеодолита.Следует отметить, что конкретные правила дрейфа и методы компенсации могут различаться в зависимости от разных моделей гиротеодолитов и сценариев применения. Следовательно, в практическом применении соответствующие меры необходимо изучать и реализовывать в соответствии с конкретными ситуациями.Исследование закономерностей дрейфа инструментальных констант гиротеодолита в зависимости от температуры обычно предполагает контроль и анализ работы прибора в различных температурных режимах.Цель таких исследований — понять, как изменения температуры влияют на инструментальные константы гиротеодолита и, возможно, найти способ компенсировать или скорректировать это температурное влияние.Инструментальные константы обычно относятся к собственным свойствам инструмента в определенных условиях, таких как стандартная температура. Для гиротеодолита константы прибора могут быть связаны с точностью его измерений, стабильностью и т. д.При изменении температуры окружающей среды свойства материала, механическая структура и т. д. внутри прибора могут измениться, что повлияет на константы прибора.Для изучения этой картины дрейфа обычно требуются следующие шаги:Выберите диапазон различных температурных точек, чтобы охватить рабочие среды, с которыми может столкнуться гироскопический теодолит.Проведите несколько направленных измерений в каждой температурной точке, чтобы получить достаточные выборки данных.Анализируйте данные и наблюдайте за изменением констант прибора в зависимости от температуры.Попробуйте построить математическую модель для описания этой взаимосвязи, например линейную регрессию, полиномиальную аппроксимацию и т. д.Используйте эту модель для прогнозирования констант прибора при различных температурах и, возможно, разработки методов компенсации температурных эффектов.Математическая модель может выглядеть так:К(Т) = а + б × Т + с × Т^2 + …Среди них K(T) — постоянная прибора при температуре T, а a, b, c и т. д. — коэффициенты, которые необходимо подобрать.Такого рода исследования имеют большое значение для улучшения характеристик гиротеодолита в различных условиях окружающей среды.Следует отметить, что конкретные методы исследования и математические модели могут различаться в зависимости от конкретных моделей приборов и сценариев применения. МГ502МЭМС-гироскоп MG502  
  • Исследование по сегментированному синтезу системы определения севера скважины МЭМС-гироскопа
    Исследование по сегментированному синтезу системы определения севера скважины МЭМС-гироскопа Jan 14, 2025
    Ключевые моментыПродукт: Система поиска севера скважины с гироскопом MEMSКлючевые особенности:Компоненты: Для поиска на север используются МЭМС-гироскопы, отличающиеся компактными размерами, низкой стоимостью и высокой ударопрочностью.Функция: использует улучшенный двухпозиционный метод (90° и 270°) и коррекцию ориентации в реальном времени для точного определения севера.Применение: Оптимизирован для скважинных буровых систем в сложных подземных условиях.Объединение данных: объединяет данные гироскопа с поправками на локальное магнитное склонение для расчета истинного севера, обеспечивая точную навигацию во время бурения.Вывод: Обеспечивает точные, надежные и независимые возможности определения севера, идеально подходит для скважин и аналогичных задач.Новый МЭМС-гироскоп представляет собой своего рода инерционный гироскоп с простой конструкцией, преимуществами которого являются низкая стоимость, небольшой размер и устойчивость к высокой ударной вибрации. Инерционный гироскоп поиска севера может завершить независимый поиск севера в любую погоду без внешних ограничений и обеспечить быструю, высокую эффективность, высокую точность и непрерывную работу. Благодаря преимуществам гироскопа MEMS, гироскоп MEMS очень подходит для скважинной системы определения севера. В данной статье описываются исследования сегментированного термоядерного синтеза системы определения севера гироскопической скважины MEMS. Далее будет представлен улучшенный двухпозиционный метод определения севера, схема определения севера с помощью гироскважины MEMS и определение значения определения севера.Улучшен двухпозиционный поиск севера.Статическая двухпозиционная схема поиска севера обычно выбирает 0° и 180° в качестве начального и конечного положений поиска севера. После повторных экспериментов регистрируется выходная угловая скорость гироскопа, и окончательный угол поиска севера получается путем объединения местной широты. В эксперименте применялся двухпозиционный метод каждые 10 °, собирался поворот поворотного стола на 360 °, и в общей сложности было собрано 36 наборов данных. После усреднения каждого набора данных измеренные значения решения были показаны на рисунке 1 ниже.Рисунок 1. Кривая аппроксимации выходного сигнала гироскопа от 0 до 360°.Как видно из рисунка 1, выходная кривая аппроксимации представляет собой косинусоидальную кривую, но экспериментальные данные и углы все еще малы, а экспериментальным результатам не хватает точности. Были проведены повторные эксперименты, угол сбора данных был расширен до 0–660 °, а двухпозиционный метод проводился каждые 10 ° от 0 °, а результаты данных были показаны на рисунке 2. Тенденция изображения имеет косинусоидальный характер. кривая, и существуют очевидные различия в распределении данных. На вершине и впадине косинусоидальной кривой распределение точек данных разбросано и степень соответствия кривой низкая, тогда как в месте с наибольшим наклоном кривой соответствие точек данных кривой больше. очевидный.Рисунок 2. Кривая аппроксимации выходного сигнала гироскопа в двух положениях 0–660°.Учитывая взаимосвязь между азимутом и выходной амплитудой гироскопа на рисунке 3, можно сделать вывод, что соответствие данных лучше, когда двухпозиционное определение севера принимается при 90° и 270°, что указывает на то, что его легче и точнее обнаружить. северный угол в направлении восток-запад. Поэтому 90°, 270° вместо 0° и 180° используются в этой статье в качестве двухпозиционных положений получения выходных сигналов гироскопа с поиском севера.Рисунок 3. Зависимость между азимутом и амплитудой выходного сигнала гироскопа.МЭМС-гироскоп, скважинный синтез, поиск севераКогда MEMS-гироскоп используется в системе определения севера скважины, он сталкивается со сложной средой, и при бурении бурового долота будет меняться угол наклона, поэтому решение северного угла становится намного сложнее. В этом разделе, на основе улучшения двухпозиционной схемы определения севера из предыдущего раздела, предлагается метод получения угла ориентации путем управления вращением в соответствии с информацией выходных данных, и получается включенный угол с севером. Конкретная блок-схема показана на рисунке 4.Данные MEMS-гироскопа передаются на верхний компьютер через интерфейс данных RS232. Как показано на рисунке 4, после того как первоначальный северный угол получен путем поиска севера в двух позициях, выполняется следующий этап бурения во время бурения. После получения указаний на поиск севера буровые работы прекращаются. Выходные данные угла ориентации MEMS-гироскопа собираются и передаются на верхний компьютер. Вращение системы поиска севера в скважине контролируется информацией об угле ориентации, а угол крена и угол тангажа устанавливаются на 0. Угол курса в этот момент представляет собой угол между чувствительной осью и направлением магнитного севера.В этой схеме угол между МЭМС-гироскопом и истинным северным направлением можно получить в реальном времени путем сбора информации об угле ориентации.Рисунок 4. Блок-схема поиска Fusion North.Северная искомая ценность определенаВ схеме слияния севера улучшенный двухпозиционный поиск севера выполнялся на гироскопе MEMS. После того, как определение севера было завершено, было получено исходное положение севера, был записан угол курса θ, а начальное состояние ориентации было (0,0,θ), как показано на рисунке 5 (a). Во время бурения долота угол наклона гироскопа изменяется, а угол крена и угол тангажа регулируются поворотным столом, как показано на рисунке 5 (b).Как показано на рисунке 5(b), при бурении долота система получает информацию об угле ориентации от инструмента ориентации, и ей необходимо оценить размеры угла крена γ 'и угла наклона β' и повернуть их с помощью управления вращением. система, чтобы они повернулись на 0. В это время выходные данные угла курса представляют собой угол между чувствительной осью и направлением магнитного севера. Угол между чувствительной осью и направлением истинного севера должен быть получен в соответствии с соотношением между магнитным севером и направлением истинного севера, а угол истинного севера должен быть получен путем объединения угла местного магнитного склонения. Решение заключается в следующем:θ’=Φ-∆φВ приведенной выше формуле θ ‘сверло и угол истинного направления на север, ∆φ – это угол местного магнитного склонения, Φ – это сверло и угол магнитного севера.Рисунок 5. Изменение исходного угла и угла наклона бурения.Северная искомая ценность определенаВ этой главе изучается схема определения севера подземной системы определения севера MEMS-гироскопа. На основе двухпозиционной схемы определения севера предлагается улучшенная двухпозиционная схема определения севера с 90° и 270° в качестве начальных положений. Благодаря постоянному развитию гироскопа MEMS, гироскоп MEMS с поиском севера может обеспечить независимое определение севера, например MG2-101, его динамический диапазон измерений составляет 100 °/с, может работать в среде от -40 ° C ~ + 85 ° C. , его нестабильность смещения составляет 0,1°/час, а случайное блуждание угловой скорости составляет 0,005°/√час.Я надеюсь, что вы сможете понять схему поиска севера МЭМС-гироскопа из этой статьи, и с нетерпением жду возможности обсудить с вами профессиональные вопросы. МГ502МЭМС-гироскоп MG502  
  • Исследование гибридного интегрированного оптического чипа оптоволоконного гироскопа
    Исследование гибридного интегрированного оптического чипа оптоволоконного гироскопа Jan 14, 2025
    Ключевые моментыПродукт: Интегрированный оптоволоконный гироскоп на основе оптического чипаКлючевые особенности:Компоненты: Использует встроенный оптический чип, объединяющий такие функции, как люминесценция, разделение луча, модуляция и обнаружение, на платформе тонкой пленки ниобата лития (LNOI).Функция: Обеспечивает интеграцию «мульти-в-одном» нечувствительных функций оптического пути, уменьшая размер и производственные затраты, одновременно улучшая поляризацию и фазовую модуляцию для точных характеристик гироскопа.Применение: Подходит для позиционирования, навигации, ориентации и измерения наклона нефтяных скважин.Оптимизация. Дальнейшие улучшения коэффициента затухания поляризации, мощности излучения и эффективности связи могут повысить стабильность и точность.Вывод: эта интегрированная конструкция открывает путь к миниатюрным и недорогим оптоволоконным гироскопам, удовлетворяя растущий спрос на компактные и надежные решения для инерциальной навигации.Благодаря преимуществам полностью твердотельного устройства, высокой производительности и гибкой конструкции, оптоволоконный гироскоп стал основным инерционным гироскопом, который широко используется во многих областях, таких как позиционирование и навигация, управление ориентацией и измерение наклона нефтяных скважин. В новой ситуации новое поколение инерциальных навигационных систем развивается в сторону миниатюризации и дешевизны, что выдвигает все более высокие требования к комплексным характеристикам гироскопа, таким как объем, точность и стоимость. В последние годы гироскопы с полусферическим резонатором и гироскопы MEMS быстро развивались, обладая преимуществом небольшого размера, что оказывает определенное влияние на рынок оптоволоконных гироскопов. Основной проблемой уменьшения объема традиционного оптического гироскопа является уменьшение объема оптического пути. В традиционной схеме оптическая трасса волоконно-оптического гироскопа состоит из нескольких дискретных оптических устройств, каждое из которых реализовано на разных принципах и процессах и имеет самостоятельную упаковку и пигтейл. В результате объем устройства согласно предшествующему уровню техники близок к пределу уменьшения, и трудно поддерживать дальнейшее уменьшение объема оптоволоконного гироскопа. Поэтому необходимо срочно изучить новые технические решения для реализации эффективной интеграции различных функций оптического пути, значительного уменьшения объема гироскопического оптического пути, улучшения совместимости процессов и снижения себестоимости устройства.С развитием технологии полупроводниковых интегральных схем интегральная оптическая технология постепенно достигла прорыва, размер элемента постоянно уменьшался, и он вышел на микро- и наноуровень, что значительно способствовало техническому развитию интегрированных оптических чипов и применяется в оптической связи, оптических вычислениях, оптическом зондировании и других областях. Интегрированная оптическая технология обеспечивает новое и перспективное техническое решение для миниатюризации и удешевления волоконно-оптического гирооптического тракта.1. Конструкция схемы интегрированного оптического чипа1.1 Общий дизайнТрадиционный оптический источник света (SLD или ASE), волоконно-оптический соединитель (называемый «разветвителем»), фазовый модулятор волновода Y-ветви (называемый «модулятором волновода Y»), детектор, чувствительное кольцо (волоконное кольцо). Среди них чувствительное кольцо является основным элементом чувствительной угловой скорости, и размер его объема напрямую влияет на точность гироскопа.Мы предлагаем гибридный интегрированный чип, который состоит из компонента источника света, многофункционального компонента и компонента обнаружения посредством гибридной интеграции. Среди них часть источника света является независимым компонентом, который состоит из чипа SLD, компонента изолирующей коллимации и периферийных компонентов, таких как радиатор и полупроводниковый охладитель. Модуль обнаружения состоит из чипа обнаружения и чипа усилителя транссопротивления. Многофункциональный модуль представляет собой основной корпус гибридного интегрированного чипа, который реализован на основе тонкопленочного чипа ниобата лития (LNOI) и в основном включает в себя оптический волновод, преобразователь модового пятна, поляризатор, светоделитель, модовый аттенюатор, модулятор и другие компоненты. чиповые структуры. Луч, излучаемый чипом SLD, после изоляции и коллимации передается в волновод LNOI.Поляризатор отклоняет входной свет, а модовый аттенюатор ослабляет нерабочую моду. После того как светоделитель разделит луч, а модулятор модулирует фазу, выходной чип попадает в чувствительное кольцо и чувствительную угловую скорость. Интенсивность света улавливается микросхемой детектора, и генерируемый фотоэлектрический выходной сигнал проходит через микросхему трансрезистивного усилителя в схему демодуляции.Гибридный интегрированный оптический чип имеет функции люминесценции, разделения луча, объединения луча, отклонения, модуляции, обнаружения и т. д. Он реализует интеграцию «мульти-в-одном» нечувствительных функций гироскопического оптического пути. Волоконно-оптические гироскопы зависят от чувствительной угловой скорости когерентного луча с высокой степенью поляризации, а характеристики поляризации напрямую влияют на точность гироскопов. Традиционный модулятор Y-волновода сам по себе представляет собой интегрированное устройство, имеющее функции отклонения, разделения луча, объединения луча и модуляции. Благодаря методам модификации материалов, таким как обмен протонов или диффузия титана, модуляторы Y-волновода обладают чрезвычайно высокой отклоняющей способностью. Однако к тонкопленочным материалам необходимо учитывать требования к размеру, интеграции и способности к отклонению, которые невозможно удовлетворить методами модификации материала. С другой стороны, поле мод тонкопленочного оптического волновода намного меньше, чем поле моды оптического волновода из объемного материала, что приводит к изменениям в распределении электростатического поля и параметрах показателя электропреломления, и необходимо перепроектировать структуру электрода. Таким образом, поляризатор и модулятор являются основными элементами конструкции микросхемы «все в одном».1.2 Специальная конструкцияПоляризационные характеристики получены путем структурного смещения и разработан встроенный поляризатор, состоящий из изогнутого волновода и прямого волновода.Согласованный. Изогнутый волновод может ограничить разницу между режимом передачи и режимом отсутствия передачи и добиться эффекта смещения режима. Потери при передаче режима передачи уменьшаются за счет установки смещения.На характеристики передачи оптического волновода в основном влияют потери рассеяния, утечка мод, потери излучения и потери рассогласования мод. Теоретически потери на рассеяние и утечка мод в небольших изогнутых волноводах невелики и в основном ограничиваются поздним процессом. Однако радиационные потери изогнутых волноводов присущи и по-разному влияют на разные моды. На характеристики передачи изогнутого волновода в основном влияют потери рассогласования мод, а на стыке прямого и изогнутого волноводов наблюдается перекрытие мод, что приводит к резкому увеличению рассеяния мод. Когда световая волна передается в поляризованный волновод, из-за наличия кривизны эффективный показатель преломления моды световой волны различен в вертикальном направлении и параллельном направлении, а ограничение моды различно, что приводит к различному затуханию. эффекты для режимов TE и TM.Следовательно, необходимо спроектировать параметры изгибающего волновода для достижения характеристик отклонения. Среди них радиус изгиба является ключевым параметром изгибаемого волновода. Потери при передаче при различных радиусах изгиба и сравнение потерь между различными режимами рассчитываются с помощью решателя собственных мод FDTD. Результаты расчетов показывают, что потери волновода уменьшаются с увеличением радиуса при малом радиусе изгиба. На этой основе рассчитывается связь между свойством поляризации (отношением моды TE к моде TM) и радиусом изгиба, причем свойство поляризации обратно пропорционально радиусу изгиба. При определении радиуса изгиба встроенного поляризатора следует учитывать теоретические расчеты, результаты моделирования, технологические возможности и фактический спрос.Временная область с конечной разностью (FDTD) используется для моделирования поля проходящего света встроенного поляризатора. Мода TE может проходить через структуру волновода с низкими потерями, тогда как мода TM может вызывать явное затухание моды, чтобы получить поляризованный свет с высоким коэффициентом затухания. Увеличивая количество каскадных волноводов, можно дополнительно улучшить коэффициент затухания поляризации-затухания, и в микронном масштабе можно получить показатели коэффициента затухания поляризации выше -35 дБ. В то же время структура волновода на кристалле проста, что позволяет легко реализовать недорогое изготовление устройства.2. Интегрированная проверка производительности оптического чипа.Основной чип LNOI интегрированного оптического чипа представляет собой ненарезанный образец, на котором выгравированы несколько структур чипа, а размер одного основного чипа LNOI составляет 11 мм × 3 мм. Тест производительности интегрированного оптического чипа в основном включает измерение спектрального отношения, коэффициента затухания поляризации и полуволнового напряжения.На основе интегрированного оптического чипа строится прототип гироскопа и проводится проверка работоспособности интегрированного оптического чипа. Характеристики статического нулевого смещения прототипа гироскопа на основе встроенного оптического чипа в невиброизолированном основании при комнатной температуре. основанный на набореГироскоп, выполненный в виде оптического чипа, имеет длительный временной дрейф в пусковом сегменте, что в основном вызвано пусковыми характеристиками источника света и большими потерями оптической линии связи. В 90-минутном тесте стабильность нулевого смещения гироскопа составила 0,17°/ч (10 с). По сравнению с гироскопом на основе традиционных дискретных устройств показатель устойчивости нулевого смещения ухудшается на порядок, что указывает на необходимость дальнейшей оптимизации встроенного оптического чипа. Основные направления оптимизации: улучшить коэффициент затухания поляризации чипа, улучшить световую мощность светоизлучающего чипа, повысить эффективность конечного соединения чипа и уменьшить общие потери интегрированного чипа.3 РезюмеМы предлагаем интегрированный оптический чип на основе LNOI, который может реализовать интеграцию нечувствительных функций, таких как люминесценция, расщепление луча, объединение луча, отклонение, модуляция и обнаружение. Стабильность нулевого смещения прототипа гироскопа на основе интегрального оптического чипа составляет 0,17°/ч. По сравнению с традиционными дискретными устройствами производительность чипа все еще имеет определенный разрыв, который необходимо дополнительно оптимизировать и улучшать. Мы предварительно изучаем возможность полностью интегрированных функций оптического пути, за исключением кольца, которые могут максимизировать ценность применения интегрированного оптического чипа в гироскопе и удовлетворить потребности в миниатюризации и низкой стоимости оптоволоконного гироскопа.ГФ50Одноосный волоконно-оптический гироскоп средней точности военного стандарта ГФ60Одноосный оптоволоконный гироскоп, оптоволоконный гироскоп малой мощности, угловая скорость Imu для навигации 
  • Расчет положения на основе чистых инерциальных навигационных данных (IMU)
    Расчет положения на основе чистых инерциальных навигационных данных (IMU) Jan 14, 2025
    Ключевые моментыПродукт: Чистая инерциальная навигационная система (ИНС) на базе IMU.Ключевые особенности:Компоненты: Использует акселерометры и гироскопы MEMS для измерения ускорения и угловой скорости в реальном времени.Функция: объединяет данные начального положения и ориентации с измерениями IMU для расчета положения и ориентации в реальном времени.Применение: Идеально подходит для внутренней навигации, аэрокосмической промышленности, автономных систем и робототехники.Проблемы: устраняет ошибки датчиков, совокупный дрейф и динамические воздействия окружающей среды с помощью методов калибровки и фильтрации.Вывод: Обеспечивает точное позиционирование в сложных условиях с высокой производительностью в сочетании со вспомогательными системами позиционирования, такими как GPS. Расчет положения на основе чистых инерциальных данных (IMU) является распространенной технологией позиционирования. Он вычисляет целевой объект в реальном времени, используя информацию об ускорении и угловой скорости, полученную блоком инерциальных измерений (IMU), в сочетании с информацией о первоначальном положении и ориентации. позиция. В этой статье будут представлены принципы, сценарии применения и некоторые связанные с этим технические проблемы расчета положения по чисто инерциальным навигационным данным.1. Принцип расчета местоположения на основе чисто инерциальных навигационных данных.Расчет положения по чисто инерциальным навигационным данным — это метод позиционирования, основанный на принципе инерциального измерения. IMU — это датчик, объединяющий акселерометр и гироскоп. Измеряя ускорение и угловую скорость целевого объекта в трех направлениях, можно получить информацию о положении и ориентации целевого объекта.При расчете положения по чисто инерциальным навигационным данным сначала необходимо получить информацию о первоначальном положении и ориентации целевого объекта. Этого можно добиться путем введения других датчиков (например, GPS, компаса и т. д.) или ручной калибровки. Информация об исходном положении и положении играет важную роль в процессе решения. Они обеспечивают отправную точку, позволяющую преобразовать данные об ускорении и угловой скорости, измеренные IMU, в фактическое смещение и изменения положения целевого объекта.Затем на основе данных об ускорении и угловой скорости, измеренных IMU, в сочетании с информацией о первоначальном положении и ориентации можно использовать алгоритмы численного интегрирования или фильтрации для расчета положения целевого объекта в реальном времени. Метод численного интегрирования позволяет получить скорость и смещение целевого объекта путем дискретизации и интегрирования данных ускорения и угловой скорости. Алгоритм фильтрации использует такие методы, как фильтрация Калмана или расширенная фильтрация Калмана, для фильтрации данных, измеренных IMU, для получения оценки положения и ориентации целевого объекта.2. Сценарии применения расчета положения по чисто инерциальным навигационным данным.Расчет положения на основе чисто инерциальных навигационных данных широко используется во многих областях. Среди них навигация в помещении является одним из типичных сценариев применения для расчета положения чисто инерциальных навигационных данных. В помещении сигналы GPS обычно не достигаются, и для расчета положения по чисто инерциальным навигационным данным можно использовать данные, измеренные IMU, для достижения точного позиционирования целевых объектов в помещении. Это имеет большое значение в таких областях, как автономное вождение и роботы для навигации внутри помещений.Расчет положения по чисто инерциальным навигационным данным также можно использовать в аэрокосмической области. В самолетах, поскольку сигнал GPS может подвергаться помехам на больших высотах или вдали от земли, расчет положения по чисто инерциальным навигационным данным может использоваться в качестве резервного метода позиционирования. Он может рассчитывать положение и ориентацию самолета в режиме реального времени на основе данных, измеренных IMU, и передавать их в систему управления полетом для стабилизации ориентации и планирования траектории полета.3. Проблемы расчета местоположения с использованием чисто инерциальных навигационных данных.Вычисление местоположения на основе чисто инерциальных навигационных данных по-прежнему сталкивается с некоторыми проблемами в практических приложениях. Прежде всего, сам датчик IMU имеет ошибки и шумы, которые влияют на точность позиционирования. Чтобы повысить точность решения, датчик IMU необходимо откалибровать и компенсировать ошибки, а для уменьшения ошибки используется соответствующий алгоритм фильтрации.Расчет положения на основе чисто инерциальных навигационных данных подвержен накоплению ошибок во время длительных перемещений. Из-за особенностей операции интегрирования, даже если точность измерения датчика IMU высока, долгосрочная интеграция приведет к накоплению ошибок позиционирования. Чтобы решить эту проблему, для вспомогательного позиционирования можно использовать другие средства позиционирования (такие как GPS, визуальные датчики и т. д.) или использовать тесно связанный метод инерциальной навигации.При расчете местоположения на основе чисто инерциальных навигационных данных также необходимо учитывать влияние динамической среды. В динамической среде на целевой объект могут воздействовать внешние силы, вызывающие отклонения в данных, измеряемых IMU. Чтобы повысить надежность решения, влияние динамической среды можно компенсировать с помощью таких методов, как оценка движения и динамическая калибровка.Подвести итогРасчет положения на основе чисто инерциальных данных — это метод позиционирования, основанный на измерении IMU. Путем получения данных ускорения и угловой скорости в сочетании с информацией о начальном положении и ориентации положение и ориентация целевого объекта рассчитываются в реальном времени. Он имеет широкое применение в внутренней навигации, аэрокосмической и других областях. Однако расчет положения по чисто инерциальным навигационным данным также сталкивается с такими проблемами, как ошибка калибровки, накопленная ошибка и динамическая среда. Чтобы повысить точность и надежность решения, необходимо использовать соответствующие методы калибровки, алгоритмы фильтрации и вспомогательные методы позиционирования. MEMS IMU, независимо разработанный Micro-Magic Inc, имеет относительно высокую точность, например UF300A и UF300B, которые имеют более высокую точность и являются продуктами навигационного класса. Если вы хотите узнать больше о IMU, как можно скорее свяжитесь с нашими профессиональными техническими специалистами. УФ300Высокоточный миниатюрный инерциальный измерительный блок Оптоволоконный инерционный измерительный блок -
  • Прецизионный анализ обнаружения деформации инженерной конструкции волоконно-оптических гироскопов
    Прецизионный анализ обнаружения деформации инженерной конструкции волоконно-оптических гироскопов Jan 13, 2025
    Ключевые моментыПродукт: Система обнаружения деформации на основе оптоволоконного гироскопаКлючевые особенности:Компоненты: Включает высокоточные оптоволоконные гироскопы для измерения угловой скорости и расчета траектории.Функция: Объединяет гироскопические данные с измерениями расстояний для обнаружения структурных деформаций с высокой точностью.Применение: Подходит для гражданского строительства, мониторинга состояния конструкций и анализа деформаций мостов, зданий и других инфраструктур.Производительность: обеспечивает точность обнаружения деформации более 10 мкм при скорости движения 2 м/с с использованием гироскопов средней точности.Преимущества: Компактный дизайн, легкий вес, низкое энергопотребление и простота использования, обеспечивающая простоту развертывания.Заключение:Эта система обеспечивает точные и надежные измерения деформации, предлагая ценные решения для инженерного и структурного анализа.1 Метод обнаружения деформаций инженерных конструкций на основе волоконно-оптического гироскопаПринцип метода обнаружения деформаций инженерных сооружений на основе волоконно-оптического гироскопа заключается в закреплении волоконно-оптического гироскопа на устройстве обнаружения, измерении угловой скорости системы обнаружения при движении по измеряемой поверхности инженерной конструкции, измерении рабочего расстояния устройство обнаружения и рассчитать рабочую траекторию устройства обнаружения для обнаружения деформации инженерной конструкции. В данной статье этот метод называется методом траекторий. Этот метод можно описать как «двумерную плоскую навигацию», то есть положение носителя определяется по отвесу измеряемой поверхности конструкции и окончательно получается траектория носителя вдоль измеряемой поверхности конструкции.Согласно принципу метода траектории, его основные источники ошибок включают в себя базовую ошибку, ошибку измерения расстояния и ошибку измерения угла. Эталонная ошибка относится к ошибке измерения начального угла наклона θ0, ошибка измерения расстояния относится к ошибке измерения ΔLi, а ошибка измерения угла относится к ошибке измерения Δθi, которая в основном вызвана ошибкой измерения угловая скорость оптоволоконного гироскопа. В данной статье не рассматривается влияние ошибки отсчета и ошибки измерения расстояния на ошибку обнаружения деформации, анализируется только ошибка обнаружения деформации, вызванная погрешностью волоконно-оптического гироскопа.2 Анализ точности обнаружения деформаций на основе волоконно-оптического гироскопа2.1 Моделирование ошибок оптоволоконного гироскопа в приложениях обнаружения деформацийВолоконно-оптический гироскоп представляет собой датчик измерения угловой скорости на основе эффекта Саньяка. После того как свет, излучаемый источником света, проходит через Y-волновод, в оптоволокне образуются два луча света, вращающиеся в противоположных направлениях. Когда носитель вращается относительно инерционного пространства, существует оптическая разность путей между двумя лучами света, и сигнал оптической интерференции, связанный с угловой скоростью вращения, может быть обнаружен на конце детектора, чтобы измерить диагональную скорость.Математическое выражение выходного сигнала оптоволоконного гироскопа: F=Kw+B0+V. Где F — выходная мощность гироскопа, K — масштабный коэффициент, а ω — мощность гироскопа.Вход угловой скорости на чувствительную ось, B0 — гироскопическое смещение нуля, υ — интегральная погрешность, включая белый шум и медленно меняющиеся компоненты, вызванные различными шумами с большим временем корреляции, υ также можно рассматривать как ошибку смещения нуля. .Источниками погрешности измерения оптоволоконного гироскопа являются ошибка масштабного коэффициента и ошибка нулевого отклонения. В настоящее время погрешность масштабного коэффициента применяемого в технике волоконно-оптического гироскопа составляет 10-5~10-6. При применении обнаружения деформации входная угловая скорость мала, а ошибка измерения, вызванная ошибкой масштабного коэффициента, намного меньше, чем ошибка, вызванная ошибкой нулевого отклонения, которую можно игнорировать. Постоянная составляющая ошибки нулевого смещения характеризуется повторяемостью нулевого смещения Br, которая представляет собой стандартное отклонение значения нулевого смещения в нескольких испытаниях. Компонент переменного тока характеризуется стабильностью нулевого смещения Bs, которая представляет собой стандартное отклонение выходного значения гироскопа от его среднего значения в одном тесте, и его значение связано со временем выборки гироскопа.2.2 Расчет погрешности деформации на основе волоконно-оптического гироскопаНа примере простой модели опирающейся балки рассчитана ошибка обнаружения деформации и установлена теоретическая модель деформации конструкции. На основании этого устанавливается обнаружениеНа основе рабочей скорости и времени выборки системы можно получить теоретическую угловую скорость оптоволоконного гироскопа. Тогда ошибка измерения угловой скорости волоконно-оптического гироскопа может быть смоделирована в соответствии с моделью ошибки нулевого отклонения волоконно-оптического гироскопа, установленной выше.2.3 Пример моделирования моделированияНастройка моделирования скорости движения и времени выборки использует режим изменения диапазона, то есть ΔLi, прошедшее за каждый момент выборки, является фиксированным, а время выборки того же сегмента линии изменяется путем изменения скорости движения. Например, когда ΔLi составляет 1 мм, например, скорость движения составляет 2 м/с, время выборки составляет 0,5 мс. Если рабочая скорость составляет 0,1 м/с, время выборки составляет 10 мс.3 Связь между характеристиками оптоволоконного гироскопа и погрешностью измерения деформацииВо-первых, анализируется влияние ошибки повторяемости при нулевом смещении. Когда нет ошибки стабильности нулевого смещения, ошибка измерения угловой скорости, вызванная ошибкой нулевого смещения, фиксируется, например, чем выше скорость движения, тем короче общее время измерения, тем меньше влияние ошибки нулевого смещения, тем меньше деформация. погрешность измерения. При высокой скорости работы ошибка стабильности смещения нуля является основным фактором, вызывающим ошибку измерения системы. Когда скорость движения низкая, ошибка повторяемости нулевого смещения становится основным источником ошибки измерения системы.При использовании типичного индекса оптоволоконного гироскопа средней точности, то есть стабильность нулевого смещения составляет 0,5 °/ч при времени выборки 1 с, повторяемость нуля составляет 0,05 °/ч. Сравните погрешности измерения системы при рабочей скорости 2 м/с, 1 м/с, 0,2 м/с, 0,1 м/с, 0,02 м/с, 0,01 м/с, 0,002 м/с и 0,001 м/с. Когда рабочая скорость составляет 2 м/с, погрешность измерения составляет 8,514 мкм (СКЗ), когда скорость измерения снижается до 0,2 м/с, погрешность измерения составляет 34,089 мкм (СКЗ), когда скорость измерения снижается до 0,002. м/с, погрешность измерения составляет 2246,222 мкм (СКЗ), как видно из результатов сравнения. Чем выше скорость движения, тем меньше погрешность измерения. Учитывая удобство инженерной эксплуатации, скорость движения 2 м/с позволяет достичь точности измерения более 10 мкм.4 РезюмеНа основе имитационного анализа измерения деформации инженерных конструкций на основе волоконно-оптического гироскопа установлена модель погрешности волоконно-оптического гироскопа, а также получена связь между погрешностью измерения деформации и характеристиками волоконно-оптического гироскопа с использованием простой опорной балки. модель как пример. Результаты моделирования показывают, что чем быстрее работает система, то есть чем короче время выборки оптоволоконного гироскопа, тем выше точность измерения деформации системы при неизменном количестве выборки и гарантированной точности определения расстояния. Благодаря типичному индексу оптоволоконного гироскопа средней точности и скорости движения 2 м/с можно достичь точности измерения деформации более 10 мкм.Micro-Magic Inc GF-50 имеет диаметр φ50*36,5 мм и точность 0,1 градуса в час. GF-60 с точностью 0,05°/ч относится к высокому тактическому уровню оптоволоконного гироскопа. Наша компания производит гироскопы небольшого размера, легкого веса, низкого энергопотребления, быстрого запуска, простого управления, простоты в использовании и других характеристик, широко используется в INS, IMU, системе позиционирования, системе определения севера, стабильности платформы и других областях. Если вы заинтересованы в нашем оптоволоконном гироскопе, пожалуйста, свяжитесь с нами.ГФ50Одноосный волоконно-оптический гироскоп средней точности военного стандарта ГФ60Одноосный оптоволоконный гироскоп, оптоволоконный гироскоп малой мощности, угловая скорость Imu для навигации 
  • Принцип обнаружения конвейерного IMU и обработка данных
    Принцип обнаружения конвейерного IMU и обработка данных Jan 13, 2025
    Ключевые моментыПродукт: IMU для проверки трубопроводовКлючевые особенности:Компоненты: Оборудован МЭМС-гироскопами и акселерометрами для измерения угловой скорости и ускорения.Функция: контролирует состояние трубопровода, обнаруживая изгибы, изменения диаметра и чистоту посредством точных измерений движения и ориентации.Применение: Используется при проверке трубопроводов, включая определение деформации, измерение диаметра и процессы очистки.Обработка данных: собирает и обрабатывает данные для точной оценки состояния, кривизны и деформации трубопровода.Вывод: Предоставляет важную информацию по техническому обслуживанию трубопроводов, повышая эффективность и надежность операций по проверке и техническому обслуживанию.1. Принцип измерения IMUIMU (Inertial Measurement Unit) — устройство, способное измерять угловую скорость и ускорение объекта в трёхмерном пространстве. Его основные компоненты обычно включают трехосный гироскоп и трехосный акселерометр. Гироскопы используются для измерения угловой скорости объекта вокруг трех ортогональных осей, а акселерометры используются для измерения ускорения объекта по трем ортогональным осям. Интегрируя эти измерения, можно получить информацию о скорости, смещении и положении объекта.2. Идентификация деформации изгиба труб.При контроле трубопровода IMU можно использовать для определения изгибной деформации трубопровода. Когда IMU установлен на скребке или другом мобильном устройстве и перемещается внутри трубопровода, он может определять изменения ускорения и угловой скорости, вызванные изгибом трубопровода. Анализируя эти данные, можно определить степень и расположение изгибов труб.3. Измерение диаметра и процесс очистки труб.Процесс измерения диаметра и очистки является важной частью обслуживания трубопровода. В этом процессе штангенциркуль, оснащенный ИДУ, используется для перемещения по трубопроводу, измерения внутреннего диаметра трубопровода и регистрации формы и размера трубопровода. Эти данные можно использовать для оценки состояния трубопроводов и прогнозирования возможных потребностей в техническом обслуживании.4. Процесс очистки стальной щеткойПроцесс очистки стальной щеткой используется для удаления грязи и отложений с внутренних стенок трубопроводов. В этом процессе скребок со стальной щеткой и ИДУ перемещается по трубопроводу, очищая внутреннюю стенку трубопровода путем чистки и чистки. Во время этого процесса IMU может записывать геометрическую информацию и чистоту трубопровода.5. Процесс обнаружения IMUПроцесс проверки IMU является ключевым шагом в использовании IMU для сбора и измерения данных во время обслуживания трубопровода. ИДУ устанавливается на скребок или подобное оборудование и перемещается внутри трубопровода, регистрируя ускорение, угловую скорость и другие параметры. Эти данные можно использовать для анализа состояния трубопровода, выявления потенциальных проблем и создания основы для последующего обслуживания и управления.6. Сбор данных и постобработка.После завершения процесса обнаружения IMU собранные данные необходимо собрать и подвергнуть последующей обработке. Сбор данных включает передачу необработанных данных с устройства IMU на компьютер или другое устройство обработки данных. Постобработка включает очистку, калибровку, анализ и визуализацию данных. Благодаря постобработке из исходных данных можно извлечь полезную информацию, такую как форма, размер, степень изгиба и т. д. трубы.7. Измерение скорости и ориентацииIMU может рассчитать скорость и положение объекта, измеряя ускорение и угловую скорость. При проверке трубопровода измерение скорости и положения имеет решающее значение для оценки состояния трубопровода и выявления потенциальных проблем. Контролируя изменения скорости и положения скребка в трубопроводе, можно определить форму, степень изгиба и возможные препятствия на трубопроводе.8. Оценка кривизны и деформации трубы.Используя данные, измеренные IMU, можно оценить кривизну и деформацию трубопровода. Анализируя данные об ускорении и угловой скорости, можно рассчитать радиус кривизны и угол изгиба трубы в различных местах. В то же время, в сочетании со свойствами материала и условиями нагрузки на трубу, также можно оценить уровень деформации и распределение напряжений в трубе на изгибе. Эта информация важна для прогнозирования срока службы трубопроводов, оценки безопасности и разработки планов технического обслуживания.Подвести итогПодводя итог, можно сказать, что IMU играет важную роль в проверке трубопроводов. Измеряя такие параметры, как ускорение и угловая скорость, можно добиться комплексной оценки и поддержания состояния трубопровода. Благодаря постоянному развитию технологий и расширению областей применения применение IMU при контроле трубопроводов будет становиться все более и более обширным. MEMS IMU, независимо разработанный Micro-Magic Inc, имеет относительно высокую точность, например U5000 и U7000, которые являются более точными и представляют собой продукты навигационного класса. Если вы хотите узнать больше о IMU, как можно скорее свяжитесь с нашими профессиональными техническими специалистами.U7000Полностью откалиброванный бесплатформенный 6Dof промышленного класса с компенсацией температуры с алгоритмом фильтра Калмана U5000Rs232/485 Гироскоп Imu для платформы стабилизации радара/инфракрасной антенны 
  • INS против GPS: какая система лучше для вас?
    INS против GPS: какая система лучше для вас? Jan 13, 2025
    Ключевые моментыПродукт: Инерциальная навигационная система (INS) и система глобального позиционирования (GPS).Ключевые особенности:Компоненты: INS использует акселерометры и гироскопы; GPS опирается на спутниковые сигналы.Функция: INS обеспечивает автономную навигацию без внешних сигналов; GPS обеспечивает точную геолокацию с глобальным покрытием.Применение: INS идеально подходит для подводных, подземных и космических работ; GPS используется в личной навигации, военной технике и слежении.Интеграция: объединение INS и GPS повышает точность и надежность в сложных условиях.Вывод: Выбор между INS и GPS зависит от конкретных потребностей, причем многие приложения получают выгоду от их интеграции для получения оптимальных навигационных решений.Для сложных транспортных средств, таких как самолеты, автономные транспортные средства, корабли, космические корабли, подводные лодки и БПЛА, крайне важно иметь точную систему для поддержания и контроля идеального движения. Двумя наиболее известными навигационными системами, используемыми сегодня, являются инерциальная навигационная система (INS) и система глобального позиционирования (GPS). Оба имеют свои уникальные преимущества и области применения, но выбор лучшей системы для ваших нужд зависит от нескольких факторов. В этой статье будут рассмотрены различия, сильные стороны и идеальные варианты использования каждой системы, чтобы помочь вам принять обоснованное решение.Понимание INS и GPSИнерциальная навигационная система (ИНС):Северный искатель MEMS может предоставлять информацию о курсе движущемуся телу полностью автономно, работая без зависимости от спутников, не подвержен влиянию климата и не требуя сложных операций. Он не только обеспечивает интерфейс вывода данных для компьютера, но также обеспечивает хороший человеко-машинный интерфейс.Искатель Севера MEMS в основном состоит из модуля инерциального измерения (IMU) и линейной части, а блок-схема аппаратного обеспечения показана на рисунке 1. Блок инерционного измерения (IMU) состоит из гироскопа и поворотного механизма. Схемная часть в основном состоит из четырех печатных плат, включая: плату питания, плату управления, плату усилителя мощности и опорную пластину. В таблице 1 показаны компоненты системы поиска севера.Глобальная система позиционирования (GPS):Система глобального позиционирования — это спутниковая навигационная система, которая предоставляет информацию о геолокации и времени приемнику GPS в любой точке Земли или вблизи нее, где есть беспрепятственная прямая видимость для четырех или более спутников GPS. GPS отличается высокой точностью и обеспечивает непрерывную информацию о местоположении, что делает его идеальным для широкого спектра применений: от персональной навигации до военных операций. Однако сигналы GPS могут блокироваться зданиями, деревьями или атмосферными условиями, что приводит к потенциальным неточностям.Технология GPS в основном используется для данных о местоположении, картографирования, отслеживания движущихся объектов, навигации, а также оценки и измерения времени. Однако эта информация зависит от спутниковых соединений, и если устройство GPS не может подключиться как минимум к четырем спутникам, предоставленных данных будет недостаточно для полной работоспособности. Сильные и слабые стороныСильные стороны ИНС:Независимость: не зависит от внешних сигналов, что делает его полезным в средах, где отсутствует GPS.Мгновенный ответ: обеспечивает немедленную информацию о положении и скорости.Надежность: Менее подвержен помехам или помехам сигнала.Слабые стороны ИНС:Дрейф: Накопленные ошибки со временем могут привести к неточностям.Сложность: как правило, более сложна и дорога, чем системы GPS.Рис.2 Плюсы и минусы Ins и GnssСильные стороны GPS:Точность: Предоставляет точную информацию о местоположении, часто в пределах нескольких метров.Охват: глобальный охват с постоянными обновлениями.Простота использования: широко доступен и относительно недорог.Сильные стороны GPS:Зависимость от сигнала: требуется прямая видимость спутников, которые могут быть заблокированы.Уязвимость: подвержен помехам, подделке и вмешательству.Объединение INS и GPSВо многих приложениях INS и GPS используются вместе, чтобы максимально использовать их взаимодополняющие преимущества. Интегрируя данные GPS с INS, система может корректировать дрейф INS и обеспечивать более надежную и точную навигацию. Эта комбинация особенно ценна в авиации, где непрерывная и точная навигация имеет решающее значение, а также в автономных транспортных средствах, где надежное и точное позиционирование имеет решающее значение для безопасной работы.С быстрым развитием микроэлектромеханических систем (MEMS) были разработаны меньшие по размеру и более портативные интегрированные навигационные системы с поддержкой GPS, такие как три модели Micro-Magic Inc с разными уровнями точности. Среди них сверхвысокая точность геодезической и тактической системы I6600, оснащенная мощным IMU, способным выдавать высокоточную информацию о местоположении, скорости и ориентации.ЗаключениеВыбор между INS и GPS зависит от ваших конкретных потребностей и условий, в которых вы будете работать. Если вам требуется система, независимая от внешних сигналов и способная работать в сложных условиях, INS может стать лучшим выбором. Однако, если вам нужна высокоточная, непрерывная информация о местоположении с глобальным покрытием, GPS, вероятно, будет лучшим вариантом. Для многих приложений объединение обеих систем может обеспечить оптимальное решение, обеспечивающее надежность и точность навигации.Понимая сильные и слабые стороны каждой системы, вы сможете принять обоснованное решение и выбрать навигационную систему, которая наилучшим образом соответствует вашим требованиям. I6700Инерциальная навигационная система с поддержкой MEMS GNSS  
  • Метод шумоподавления данных IMU на основе вейвлет-разложения
    Метод шумоподавления данных IMU на основе вейвлет-разложения Jan 13, 2025
    Ключевые моментыПродукт: Инерциальная навигационная система MEMS (INS) с поддержкой GNSS.Ключевые особенности:Компоненты: Оснащен MEMS-гироскопами и акселерометрами для точных инерциальных измерений, а также поддержкой GNSS для улучшенной навигации.Функция: Сочетает краткосрочную точность INS с долгосрочной стабильностью GNSS, обеспечивая непрерывную передачу навигационных данных.Применение: Подходит для тактических операций, дронов, робототехники и промышленной автоматизации.Data Fusion: объединяет данные INS с поправками GNSS для уменьшения дрейфа и повышения точности позиционирования.Вывод: Обеспечивает высокую точность и надежность, идеально подходит для навигационных задач в различных отраслях.В процессе снижения шума IMU (инерционного измерительного блока) эффективным методом является вейвлет-шумоподавление. Основной принцип шумоподавления вейвлетов заключается в использовании характеристик частотно-временной локализации вейвлетов с различным разрешением для разложения компонентов разных частот сигнала на разные подпространства, а затем обработки вейвлет-коэффициентов в этих подпространствах для удаления шума.В частности, процесс вейвлет-шумоподавления можно разделить на следующие три этапа:1. Выполните вейвлет-преобразование зашумленного сигнала IMU и разложите его на различные подпространства вейвлетов.2. Пороговые коэффициенты в этих вейвлет-подпространствах, то есть коэффициенты ниже определенного порога рассматриваются как шум и устанавливаются в ноль, тогда как коэффициенты выше порога сохраняются, и эти коэффициенты обычно содержат полезную информацию о сигнале.3. Выполните обратное преобразование обработанных вейвлет-коэффициентов, чтобы получить сигнал с шумоподавлением.Этот метод позволяет эффективно удалить шум в сигнале IMU и улучшить качество и точность сигнала. В то же время, поскольку вейвлет-преобразование имеет хорошие частотно-временные характеристики, оно позволяет лучше сохранить полезную информацию в сигнале и избежать чрезмерных потерь информации в процессе шумоподавления.Обратите внимание, что конкретные методы выбора и обработки порога могут различаться в зависимости от конкретных характеристик сигнала и условий шума, и поэтому их необходимо корректировать и оптимизировать в соответствии с конкретными обстоятельствами в реальных приложениях.Метод шумоподавления данных IMU, основанный на вейвлет-разложении, представляет собой эффективную технологию обработки сигналов, используемую для удаления шума из данных IMU (Inertial Measurement Unit). Данные IMU часто содержат высокочастотный шум и низкочастотный дрейф, которые могут повлиять на точность и производительность IMU. Метод снижения шума, основанный на вейвлет-разложении, позволяет эффективно отделять и удалять эти шумы и дрейфы, тем самым повышая точность и надежность данных IMU.Вейвлет-разложение — это метод многомасштабного анализа, который позволяет разлагать сигналы на вейвлет-компоненты разных частот и масштабов. Путем вейвлет-разложения данных IMU высокочастотный шум и низкочастотный дрейф можно разделить и обработать по-разному.Метод шумоподавления данных IMU, основанный на вейвлет-разложении, обычно включает в себя следующие этапы:1. Выполните вейвлет-разложение данных IMU и разложите их на вейвлет-компоненты разных частот и масштабов.2. В соответствии с характеристиками вейвлет-компонентов выберите соответствующий метод обработки порога или вейвлет-коэффициента для подавления или удаления высокочастотного шума.3.Моделируйте и компенсируйте низкочастотный дрейф, чтобы уменьшить его влияние на данные IMU.4. Восстановите обработанные компоненты вейвлета, чтобы получить данные IMU с шумоподавлением. Метод шумоподавления данных IMU, основанный на вейвлет-разложении, имеет следующие преимущества:1. Способен эффективно отделять и удалять высокочастотный шум и низкочастотный дрейф, повышая точность и надежность данных IMU.2. Иметь хорошие возможности частотно-временного анализа и одновременно обрабатывать информацию о времени и частоте сигналов.3. Подходит для различных типов данных IMU и различных сценариев применения, обладает высокой универсальностью и гибкостью.Подвести итогКороче говоря, метод шумоподавления данных IMU, основанный на вейвлет-разложении, представляет собой эффективную технологию обработки сигналов, которая может повысить точность и надежность данных IMU и предоставить более точные и надежные данные для инерциальной навигации, оценки ориентации, отслеживания движения и других областей. поддерживать.IMU, независимо разработанный Micro-Magic Inc, использует некоторые относительно строгие методы шумоподавления, чтобы лучше продемонстрировать потребителям более точные и недорогие IMU MEMS, такие как U5000 и U3500 в качестве IMU MEMS навигационной серии. Технические специалисты провели различные эксперименты по шумоподавлению данных IMU, чтобы лучше соответствовать требованиям потребителей к точному измерению состояния движения объектов.Если вы хотите узнать больше об IMU, свяжитесь с нашим соответствующим персоналом.U3500Датчик IMU MEMS IMU3500 Выход CAN U5000Что бы вам ни понадобилось, CARESTONE всегда рядом. 
  • Идентификация кварцевого гибкого акселерометра посредством анализа вибрации
    Идентификация кварцевого гибкого акселерометра посредством анализа вибрации Jan 13, 2025
    Ключевые моментыПродукт: Кварцевый гибкий акселерометрКлючевые особенности:Компоненты: Используются высокоточные кварцевые гибкие акселерометры для точных измерений ускорения и наклона.Функция: анализ вибрации помогает определить коэффициенты погрешности датчика, повышая точность измерений и производительность.Применение: Широко используется в мониторинге состояния конструкций, аэрокосмической навигации, автомобильных испытаниях и диагностике промышленного оборудования.Анализ данных: объединяет данные о вибрации с алгоритмами обработки сигналов для оптимизации моделей датчиков и повышения производительности.Вывод: Обеспечивает точные и надежные измерения ускорения, имеет большой потенциал в различных высокоточных отраслях.1.Введение:В области сенсорных технологий акселерометры играют ключевую роль в различных отраслях: от автомобильной до аэрокосмической, от здравоохранения до бытовой электроники. Их способность измерять ускорение и наклон по нескольким осям делает их незаменимыми для самых разных приложений, от мониторинга вибрации до инерциальной навигации. Среди разнообразных типов акселерометров кварцевые гибкие акселерометры выделяются своей точностью и универсальностью. В этой статье мы углубимся в тонкости идентификации кварцевых гибких акселерометров посредством анализа вибрации, исследуем их конструкцию, принципы работы и значение анализа вибрации для оптимизации их работы.2. Важность анализа вибрации:Чтобы акселерометр был идентифицирован, сначала проведите на нем испытания на разнонаправленном вибрационном столе. Получайте богатые необработанные данные с помощью программного обеспечения для сбора данных. Затем, на основе тестовых данных, с одной стороны, объедините общий алгоритм наименьших квадратов, чтобы определить его коэффициенты ошибок высокого порядка, улучшить уравнение модели сигнала, повысить точность измерения датчика и изучить взаимосвязь между высокими порядок коэффициентов погрешности акселерометра и его рабочее состояние.Ищите методы определения его рабочего состояния через коэффициенты ошибок высокого порядка акселерометра. С другой стороны, извлеките его эффективный набор функций, обучите нейронные сети и, наконец, модульно используйте эффективный алгоритм анализа данных с помощью технологии виртуальных инструментов. Разработать прикладное программное обеспечение для определения рабочего состояния кварцевых гибких акселерометров для быстрой и точной идентификации рабочего состояния датчиков. Это поможет персоналу оперативно совершенствовать структуру внутренних цепей, повысить точность измерений акселерометров, повысить выход выпускаемой продукции в процессе обработки и производства.Анализ вибрации служит краеугольным камнем при определении характеристик и оптимизации кварцевых гибких акселерометров. Подвергая эти датчики контролируемым вибрациям на разных частотах и амплитудах, инженеры могут оценить их динамические характеристики отклика, включая чувствительность, линейность и частотный диапазон. Анализ вибрации помогает выявить потенциальные источники ошибок или нелинейности выходных данных акселерометра, что позволяет производителям точно настраивать параметры датчика для повышения производительности и точности.3. Процесс идентификации:Идентификация кварцевых гибких акселерометров посредством анализа вибрации предполагает систематический подход, включающий экспериментальные испытания, анализ данных и проверку. Инженеры обычно проводят вибрационные испытания с использованием калиброванных вибростендов или систем вибровозбуждения, подвергая акселерометры синусоидальным или случайным вибрациям при записи их выходных сигналов. Передовые методы обработки сигналов, такие как анализ Фурье и оценка спектральной плотности, используются для анализа частотной характеристики акселерометров и определения резонансных частот, коэффициентов затухания и других критических параметров. Посредством итеративного тестирования и анализа инженеры совершенствуют модель акселерометра и проверяют ее эффективность на соответствие заданным критериям.4.Приложения и перспективы на будущее:Кварцевые гибкие акселерометры находят применение в самых разных отраслях, включая мониторинг состояния конструкций, аэрокосмическую навигацию, автомобильные испытания и диагностику промышленного оборудования. Их высокая точность, надежность и универсальность делают их незаменимыми инструментами для инженеров и исследователей, стремящихся понять и смягчить воздействие динамических сил и вибраций. Заглядывая в будущее, можно сказать, что продолжающиеся достижения в области сенсорных технологий и алгоритмов обработки сигналов будут способствовать дальнейшему повышению производительности и возможностей кварцевых гибких акселерометров, открывая новые горизонты в анализе вибрации и динамическом измерении движения.В заключение отметим, что идентификация кварцевых гибких акселерометров посредством анализа вибрации представляет собой важнейшую задачу в области сенсорных технологий, позволяющую инженерам раскрыть весь потенциал этих прецизионных инструментов. Понимая принципы работы, проводя тщательный анализ вибрации и улучшая характеристики датчиков, производители и исследователи могут использовать возможности кварцевых акселерометров для множества приложений, начиная от структурного мониторинга и заканчивая передовыми навигационными системами. Поскольку технологические инновации продолжают ускоряться, роль анализа вибрации в оптимизации производительности датчиков будет оставаться первостепенной, что будет способствовать прогрессу в прецизионных измерениях и динамическом измерении движения.5. ЗаключениеMicro-Magic Inc предлагает высокоточные кварцевые гибкие акселерометры, такие как AC1, с небольшой погрешностью и высокой точностью, которые имеют стабильность смещения 5 мкг, повторяемость масштабного коэффициента 15 ~ 50 частей на миллион и вес 80 г и могут быть широко распространены. используется в области бурения нефтяных скважин, систем измерения микрогравитации носителя и инерциальной навигации. АС1Кварцевый гибкий акселерометр уровня навигационного класса с диапазоном измерения 50G, отличная долговременная стабильность и повторяемость  
  • Как улучшить производительность инерциальных навигационных систем MEMS?
    Как улучшить производительность инерциальных навигационных систем MEMS? Jan 13, 2025
    Ключевые моментыПродукт: Интегрированная навигационная система GNSS/MEMS INSКлючевые особенности:Компоненты: Сочетает инерциальные датчики MEMS с приемниками GNSS для расширенных навигационных возможностей.Функция: Обеспечивает высокочастотные обновления и точную информацию о местоположении, скорости и ориентации путем интеграции инерциальных данных с поправками GNSS.Применение: Идеально подходит для дронов, бортовых самописцев, интеллектуальных беспилотных летательных аппаратов и подводных аппаратов.Объединение данных: используется фильтрация Калмана для объединения данных GNSS с данными MEMS INS, исправления накопленных ошибок и повышения общей точности.Вывод: Эта интегрированная система использует сильные стороны обеих технологий для повышения производительности и надежности навигации и имеет широкий спектр применений в различных отраслях.С развитием инерциальных устройств MEMS точность гироскопов MEMS и акселерометров MEMS постепенно улучшалась, что привело к быстрому прогрессу в применении МЭМС. МЭМС ИНС. Однако повышение точности инерциальных устройств MEMS оказалось недостаточным для удовлетворения все более высоких требований к точности MEMS INS. Таким образом, в центре внимания исследований MEMS INS стало повышение точности MEMS INS с помощью алгоритмов компенсации ошибок и других методов.Чтобы повысить производительность MEMS INS, исследователи изучили различные методы уменьшения ошибок в этих системах. Существует четыре основных подхода к уменьшению ошибок MEMS INS:Калибровка и компенсация параметров ошибок датчиков. Сюда входит использование математического моделирования и экспериментальных инструментов для стимулирования ошибок датчиков, систематическая калибровка детерминированных ошибок на уровне системы, а затем компенсация этих ошибок с помощью алгоритмов инерциальной навигации для улучшения общей производительности.Технология модуляции вращения. Применяя соответствующие схемы модуляции вращения, можно добиться периодического изменения ошибок датчика, не полагаясь на внешние источники информации. Эта автоматическая компенсация ошибок в алгоритме навигации подавляет влияние ошибок датчиков на MEMS INS.Технология резервирования инерционных устройств: благодаря низкой стоимости инерционных датчиков MEMS можно реализовать конструкции резервирования. Резервирование датчиков может эффективно снизить влияние случайных ошибок на MEMS INS, тем самым повышая производительность.Включение внешних источников информации: использование фильтрации Калмана для интегрированной навигации для подавления накопления ошибок MEMS INS.В этой статье далее будет представлен четвертый метод, который является наиболее практичной и широко исследованной формой интегрированной навигации — интегрированной навигационной системой GNSS/MEMS INS.Причины использования GNSS для помощи MEMS INSMEMS INS — это тип системы точного счисления, которая измеряет относительное состояние от предыдущего до текущего момента выборки. Для измерения он не полагается на акустические, оптические или электрические сигналы, что делает его очень устойчивым к внешним помехам и обману. Ее автономность и надежность делают ее основной навигационной системой для различных носителей, таких как самолеты, корабли и транспортные средства. На рис.1 приведены характеристики ИНС разных марок.Рис.1. Характеристики ИНС разных марок.MEMS INS обеспечивает высокую скорость обновления и может выводить полную информацию о состоянии, включая положение, скорость, положение, угловую скорость и ускорение, с высокой точностью краткосрочной навигации. Однако MEMS INS требует дополнительных источников информации для инициализации положения, скорости и ориентации, а ее чистая инерциальная навигационная ошибка накапливается с течением времени, особенно в INS тактического и коммерческого уровня.Комбинация GNSS/MEMS INS позволяет реализовать взаимодополняющие преимущества обеих систем: GNSS обеспечивает стабильную долговременную точность и может предлагать начальные значения положения и скорости, корректируя накопленные ошибки в MEMS INS посредством фильтрации. Между тем, MEMS INS может повысить скорость обновления выходных навигационных данных GNSS, расширить типы выходной информации о состоянии и помочь в обнаружении и устранении ошибок наблюдения GNSS.Базовая модель интегрированной навигации GNSS/MEMS INSБазовая модель интеграции GNSS/MEMS ИНС отражает функциональную связь между наблюдаемой информацией от датчиков (IMU и приемников) и навигационными параметрами носителя (положение, скорость и ориентация), а также виды и случайные модели ошибок измерения датчиков. . Навигационные параметры перевозчика должны быть описаны в конкретной опорной системе координат.Рис.2 Базовая модель Gnssmems Ins со встроенной навигациейЗадачи навигации обычно включают две или более системы координат: инерционные датчики измеряют движение носителя относительно инерциального пространства, тогда как навигационные параметры носителя (положение и скорость) обычно описываются в системе координат, фиксированной на Земле, для интуитивного понимания. Обычно используемые системы координат в интегрированной навигации GNSS/INS включают геоцентрическую инерциальную систему координат, геоцентрическую фиксированную систему координат, местную географическую систему координат и систему координат тела.В настоящее время алгоритмы интеграции GNSS/MEMS INS в абсолютную навигацию созрели, и на рынке появилось множество высокопроизводительных продуктов. Например, три недавно выпущенные модели MEMS INS от Micro-Magic Inc, показанные на изображении ниже, подходят для применения в дронах, бортовых самописцах, интеллектуальных беспилотных транспортных средствах, позиционировании и ориентации дорожного полотна, обнаружении каналов, беспилотных надводных транспортных средствах и подводных системах. транспортные средства.Рис.3. Три недавно выпущенных GNSS/MEMS INS от Micro-Magic Inc.I3500Высокоточная 3-осевая инерциальная навигационная система Mems Gyro I3500 I3700Высокоточный сельскохозяйственный GPS-трекер, модуль потребления, инерциальная навигационная система, Mtk Rtk Gnss Rtk, антенна, алгоритм Rtk 
  • Как работает тактический оптоволоконный гироскоп?
    Как работает тактический оптоволоконный гироскоп? Jan 13, 2025
    Ключевые моментыПродукт: Волоконно-оптический гироскоп (FOG)Ключевые особенности:Компоненты: На основе катушек оптоволокна, использующих эффект Саньяка для точных измерений углового смещения.Функция: Обеспечивает высокую чувствительность и точность, идеально подходит для определения ориентации движущихся объектов.Применение: широко используется в военных целях (например, наведение ракет, навигация танков) и расширяется в гражданские сектора (например, автомобильная навигация, геодезия).Data Fusion: сочетает в себе инерционные измерения с передовой микроэлектроникой для повышения точности и стабильности.Вывод: оптоволоконный гироскоп имеет решающее значение для высокоточной навигации и имеет многообещающий потенциал роста в различных приложениях.Рынок волоконно-оптических гироскоповБлагодаря своим уникальным преимуществам волоконно-оптический гироскоп имеет широкую перспективу развития в области прецизионного измерения физических величин. Поэтому изучение влияния оптических устройств и физической среды на производительность волоконно-оптических гироскопов и подавление шума относительной интенсивности стали ключевыми технологиями для реализации высокоточных волоконно-оптических гироскопов. По мере углубления исследований интегрированный волоконный гироскоп с высокой точностью и миниатюризацией будет широко разработан и применен.Волоконно-оптический гироскоп в настоящее время является одним из основных устройств в области инерционной техники. С улучшением технического уровня масштабы применения волоконно-оптических гироскопов будут продолжать расширяться. Поскольку это основной компонент оптоволоконных гироскопов, рыночный спрос также будет расти. В настоящее время высококачественное оптоволоконное кольцо Китая все еще необходимо импортировать, и в соответствии с общей тенденцией внутреннего замещения основная конкурентоспособность китайских предприятий по производству оптоволоконных колец и независимые возможности исследований и разработок все еще нуждаются в дальнейшем повышении.В настоящее время оптоволоконное кольцо в основном используется в военной сфере, но с расширением применения оптоволоконного гироскопа в гражданской сфере доля применения оптоволоконного кольца в гражданской области будет еще больше улучшаться.Согласно «Отчету об обзоре рынка оптоволоконных гироскопов Китая и анализе инвестиционных рекомендаций на 2022-2027 годы»:Волоконно-оптический гироскоп представляет собой чувствительный элемент на основе катушки оптического волокна, а свет, излучаемый лазерным диодом, распространяется вдоль оптического волокна в двух направлениях. Разница путей распространения света определяет угловое смещение чувствительного элемента. Современный оптоволоконный гироскоп — это прибор, позволяющий точно определять ориентацию движущихся объектов. Это инерциальный навигационный прибор, широко используемый в современной авиационной, навигационной, аэрокосмической и оборонной промышленности. Его развитие имеет большое стратегическое значение для промышленности страны, национальной обороны и других высокотехнологичных разработок.Волоконно-оптический гироскоп — это новый полностью твердотельный оптоволоконный датчик, основанный на эффекте Саньяка. Волоконно-оптический гироскоп можно разделить на интерферометрический волоконно-оптический гироскоп (I-FOG), резонансный волоконно-оптический гироскоп (R-FOG) и волоконно-оптический гироскоп вынужденного рассеяния Бриллюэна (B-FOG) в зависимости от режима его работы. По точности оптоволоконный гироскоп можно разделить на тактический уровень низкого уровня, тактический уровень высокого класса, уровень навигации и уровень точности. По открытости волоконно-оптические гироскопы можно разделить на военные и гражданские. В настоящее время большинство волоконно-оптических гироскопов используются в военных целях: для ориентации истребителей и ракет, навигации танков, измерения курса подводных лодок, боевых машин пехоты и других областях. Гражданское использование в основном связано с автомобильной и авиационной навигацией, геодезией мостов, бурением нефтяных скважин и другими областями.В зависимости от точности оптоволоконного гироскопа его применение варьируется от стратегического оружия и оборудования до гражданских сфер коммерческого уровня. Волоконно-оптические гироскопы средней и высокой точности в основном используются в высокотехнологичных областях вооружения и техники, таких как аэрокосмическая промышленность, в то время как недорогие оптоволоконные гироскопы низкой точности в основном используются в разведке нефти, управлении ориентацией сельскохозяйственных самолетов, роботах и многих других. гражданские поля с низкими требованиями к точности. С развитием передовых технологий микроэлектроники и оптоэлектроники, таких как фотоэлектрическая интеграция и разработка специальной волоконной оптики для волоконно-оптических гироскопов, ускорились миниатюризация и удешевление волоконно-оптических гироскопов.Краткое содержаниеВолоконно-оптический гироскоп Micro-Magic Inc в основном представляет собой тактический волоконно-оптический гироскоп средней точности, по сравнению с другими производителями, низкой стоимостью, длительным сроком службы, цена очень доминирующая, а область применения также очень широкая, включая два очень популярных GF50. , GF-60, вы можете нажать на страницу сведений, чтобы получить дополнительные технические данные.ГФ50Одноосный волоконно-оптический гироскоп средней точности военного стандарта ГФ60Одноосный оптоволоконный гироскоп, оптоволоконный гироскоп малой мощности, угловая скорость Imu для навигации 
  • Как работают высокотемпературные акселерометры?
    Как работают высокотемпературные акселерометры? Jan 13, 2025
    Ключевые моментыПродукт: Высокотемпературные акселерометрыКлючевые особенности:Компоненты: Разработаны с использованием передовых материалов и технологий, таких как структуры аморфного кварца для повышения стабильности.Функция: предоставление надежных и точных данных в экстремальных условиях, что имеет решающее значение для безопасности и производительности.Области применения: незаменимы в нефтегазовой отрасли (системы MWD), аэрокосмической отрасли (конструкционный мониторинг), автомобильных испытаниях (оценка сбоев и характеристик) и в различных отраслях промышленности.Целостность данных: способность работать при высоких температурах и вибрациях, обеспечивая непрерывную работу и минимальное время простоя.Вывод: высокотемпературные акселерометры жизненно важны для отраслей, работающих в суровых условиях, поскольку они повышают эффективность и безопасность за счет точных измерений.Надежность имеет решающее значение для успеха в сложной нефтегазовой отрасли, где риски часты и могут существенно повлиять на возможности. Надежные и точные данные могут определить, будет ли предприятие успешным или неудачным.Ericco поставляет надежные сенсорные продукты для мирового нефтегазового сектора, доказывая свою исключительную надежность и точность в самых сложных условиях мира.1.Что такое высокотемпературные акселерометры?Высокотемпературные акселерометры предназначены для работы в суровых условиях и предоставления точных данных в таких требовательных отраслях, как аэрокосмическая и нефтегазовая. По сути, их цель — эффективно функционировать в сложных условиях, включая подземные условия и экстремальные температуры.Производители высокотемпературных акселерометров используют специальные технологии, обеспечивающие надежность датчиков в экстремальных условиях. Например, доказано, что кварцевый акселерометр Micro-Magic Inc. для нефти и газа обладает высокой производительностью. В этой модели используется структура из аморфной кварцевой массы, которая реагирует на ускорение за счет изгибающего движения, обеспечивая превосходную стабильность смещения, масштабного коэффициента и выравнивания осей.2.Как используются высокотемпературные акселерометры?Высокотемпературные акселерометры жизненно важны в отраслях, где оборудование должно выдерживать экстремальные условия. Их прочная конструкция и передовые технологии позволяют им надежно работать в суровых условиях, предоставляя важные данные, которые повышают безопасность, эффективность и производительность. Вот более пристальный взгляд на их применение и значение:2.1 Нефтегазовая промышленностьВ нефтегазовой отрасли высокотемпературные акселерометры являются важными компонентами систем измерения во время бурения (MWD). MWD — это метод каротажа скважин, в котором используются датчики внутри бурильной колонны для предоставления данных в реальном времени, управления бурением и оптимизации операций бурения. Эти акселерометры могут выдерживать сильную жару, удары и вибрации, возникающие глубоко под землей. Они помогают, обеспечивая точные измерения.Оптимизация операций бурения: предоставление точных данных об ориентации и положении сверла, что способствует эффективному и точному бурению.Повышение безопасности. Обнаружение вибраций и ударов, которые могут указывать на потенциальные проблемы, позволяет своевременно вмешаться и предотвратить несчастные случаи.Повышение эффективности. Сократите время простоев за счет предоставления непрерывных и надежных данных, которые помогают предотвратить сбои в работе и дорогостоящие простои.Рис.1 Высокотемпературные акселерометры2.2 Аэрокосмическая промышленностьВ аэрокосмической промышленности высокотемпературные акселерометры используются для контроля производительности и структурной целостности самолетов. Они могут выдерживать экстремальные условия полета, включая высокие температуры и сильные вибрации, и имеют решающее значение дляМониторинг состояния конструкции: измеряйте вибрацию и нагрузки на компоненты самолета, гарантируя, что они остаются в безопасных пределах.Производительность двигателя. Мониторинг вибрации в авиационных двигателях для выявления аномалий и предотвращения отказов двигателей.Летные испытания: предоставление точных данных о динамике самолета во время испытательных полетов, что помогает в разработке и совершенствовании конструкции самолетов.2.3 Автомобильные испытанияПри автомобильных испытаниях высокотемпературные акселерометры используются для измерения динамики и целостности конструкции автомобиля в экстремальных условиях. Они особенно полезны для:Краш-тестирование: отслеживайте силы ускорения и замедления во время краш-тестов, чтобы оценить безопасность и ударопрочность автомобиля.Высокопроизводительные испытания: измеряйте вибрацию и нагрузки в высокопроизводительных транспортных средствах, чтобы убедиться, что компоненты выдерживают экстремальные условия вождения.Испытание на долговечность: оцените долговечность автомобильных компонентов, подвергая их длительному воздействию высоких температур и вибраций.2.4 Промышленное применениеПомимо нефтегазовой, аэрокосмической и автомобильной промышленности, высокотемпературные акселерометры также используются в различных других отраслях промышленности, где оборудование работает в экстремальных условиях. К ним относятся:Производство электроэнергии. Контролируйте вибрацию турбин и другого оборудования, чтобы обеспечить оптимальную производительность и предотвратить сбои.Производство: измеряйте вибрацию и напряжения в тяжелом оборудовании для поддержания эффективности и безопасности работы.Робототехника: предоставляет точные данные о движениях и нагрузках, испытываемых роботами, работающими в высокотемпературных средах, например, в сварочных или литейных цехах.3. Высокотемпературные акселерометры Micro-Magic Inc.Micro-Magic Inc преуспела в разработке и производстве высокотемпературных акселерометров, отвечающих строгим требованиям этих отраслей. Мы предлагаем решения, специально разработанные для исследований в области энергетики и других высокотемпературных применений. Эти акселерометры имеют следующие особенности:Аналоговый выход: для легкой интеграции с существующими системами.Варианты монтажа: Квадратные или круглые фланцы для удовлетворения различных требований установки.Диапазон регулировки на месте: возможность настройки в соответствии с конкретными требованиями приложения.Внутренние датчики температуры: для тепловой компенсации, обеспечивающие точные измерения, несмотря на колебания температуры.Более того, кварцевый акселерометр для нефти и газа компании Micro-Magic Inc доказал свою высокую производительность. В этой модели используется структура из аморфной кварцевой массы, которая реагирует на ускорение за счет изгибающего движения, обеспечивая превосходную стабильность смещения, масштабного коэффициента и выравнивания осей.Некоторые высокотемпературные акселерометры также оснащены внешними усилителями для защиты датчика от теплового повреждения.И мы рекомендуем AC1 для нефти и газа, рабочая температура которого составляет -55 ~ +85 ℃, с диапазоном входного сигнала ± 50 г, повторяемость смещения.
1 2 3 4 5 6
Всего 6страницы
Subscibe To Newsletter
Пожалуйста, читайте дальше, оставайтесь в курсе, подписывайтесь, и мы будем рады, если вы поделитесь с нами своим мнением.
f y

оставить сообщение

оставить сообщение
Если вы заинтересованы в нашей продукции и хотите узнать более подробную информацию, пожалуйста, оставьте сообщение здесь, мы ответим вам, как только сможем.
представлять на рассмотрение

Дом

Продукты

WhatsApp

Связаться с нами