Дом

Завод Кварцевый Гибкий Аклерометр

  • Метод испытания с обратной связью для определения коэффициента демпфирования акселерометра Q-Flex
    Метод испытания с обратной связью для определения коэффициента демпфирования акселерометра Q-Flex Jan 10, 2025
    Ключевые моментыПродукт: Кварцевый акселерометр Q-FlexКлючевые особенности:Компоненты: Маятниковая конструкция из кварца высокой чистоты с замкнутой системой обратной связи для точных измерений ускорения.Функция: Обеспечивает точные и стабильные данные об ускорении, с низким уровнем шума и хорошей долгосрочной стабильностью, особенно эффективно в режиме замкнутого контура.Применение: Идеально подходит для навигации и ориентации самолетов, геологоразведочных работ и промышленных условий, требующих точных инерциальных измерений.Метод измерения: Измерение частотной характеристики с обратной связью, обеспечивающее надежную оценку параметров демпфирования и точную производительность.Вывод: Акселерометр Q-Flex обеспечивает высокую точность и стабильность, что делает его ценным для приложений навигации, управления и промышленных измерений.Акселерометр Q-Flex — это своего рода инерционное измерительное устройство, в котором используется кварцевый маятник для измерения ускорения объекта по характеристике отклонения от положения равновесия под действием силы инерции. Благодаря низкому температурному коэффициенту кварцевого материала высокой чистоты и стабильным структурным характеристикам акселерометр Q-Flex обладает высокой точностью измерения, низким шумом измерения, хорошей долговременной стабильностью и широко используется в системах ориентации, навигации и наведения самолетов. а также геологоразведочные работы и другие промышленные среды.1. Метод обнаружения акселерометра Q-Flex.Когда система является разомкнутой, поскольку система не может создавать момент обратной связи, маятниковый узел подвергается слабому моменту инерции или активному моменту гидротрансформатора, кварцевый маятник легко касается железа ярма и вызывает явление насыщения, что делает его очень сложно проверить параметры демпфирования в разомкнутом контуре, поэтому параметры демпфирования считаются измеренными в состоянии замкнутого контура системы.Частотные характеристики замкнутой системы управления отражают изменение амплитуды и фазы выходного сигнала с частотой входного сигнала. Частотная характеристика стабилизированной системы имеет ту же частоту, что и входной сигнал, а ее амплитуда и фаза являются функциями частоты, поэтому амплитудно-фазовая характеристика частотной характеристики может быть применена для определения математической модели системы. . Для получения реальных параметров демпфирования акселерометра используется метод измерения АЧХ с обратной связью.В методе измерения частотной характеристики с обратной связью акселерометр фиксируется на горизонтальном вибрационном столе в состоянии «маятника», так что направление ввода ускорения вибрационного стола совмещено с чувствительной осью акселерометра, и акселерометр размещается горизонтально в состоянии «маятника», что позволяет устранить асимметрию силы тяжести по входному ускорению. Горизонтальное размещение акселерометра в «состоянии маятника» исключает влияние силы тяжести на асимметрию входного ускорения.Рис.1 Амплитуда замкнутого контура Частотная характеристика qfasУправляя горизонтальным вибратором, на акселерометр Q-Flex подается синусоидальный сигнал ускорения величиной 6 g (g — ускорение свободного падения, 1 g ≈ 9,8 м/с2) с постепенно возрастающей частотой от 0 до 600 Гц. который может отражать затухание амплитуды и фазовую задержку выходного сигнала акселерометра в пределах расчетного диапазона и полосы пропускания акселерометра. Акселерометр будет выдавать соответствующий выходной сигнал под действием встряхивающего стола, регистратор с высокой частотой дискретизации, подключенный к обеим сторонам сопротивления выборки, записывая выходной сигнал акселерометра, и построит амплитудно-частотную характеристическую кривую, показанную на рисунке 1.В полосе пропускания амплитудно-частотной характеристики акселерометра кварцевый акселерометр сохраняет хорошую способность следовать за ускорением, при увеличении входной частоты ускорения пик резонанса системы составляет 565 Гц, пик резонанса составляет Mr = 32 дБ, частота среза системы 582Гц, амплитуда системы на частоте стала давать затухание более 3дБ. Поскольку вращательная инерция, жесткость и остальные параметры контура сервоуправления акселерометра Q-Flex известны, для расчета неизвестного параметра δ используются амплитудно-частотные характеристики системы. Передаточная функция замкнутой системы задается какУравнение 1Метод наименьших квадратов оценивает параметры модели на основе фактических наблюдаемых данных, а набор данных по амплитуде частоты получается путем генерации входного сигнала внешнего ускорения через горизонтальный вибростенд, который измеряется перьевым регистратором, как показано в таблице. 1.Табл.1. Данные выборки частотных амплитуд qfasАмплитудно-частотная характеристика системы кварцевого изгибного акселерометра с известными параметрами является целевой функцией, а остаточная сумма квадратов с неизвестными параметрами определяется какУравнение 2Где n — количество выбранных характерных точек. Используя приведенное выше уравнение, выбирается подходящее значение δ так, чтобы D(δ) имело минимальное значение. Требуемый коэффициент демпфирования получается как δ=7,54×10-4 Н·м·с/рад с использованием метода наименьших квадратов.Создается имитационная модель системы с обратной связью, коэффициент демпфирования заменяется в модель головки кварцевого изгибного акселерометра, и система моделируется, и строится амплитудно-частотная характеристическая кривая системы, как показано на рис. 2. что ближе к измеренной кривой.Рис.2 Амплитуда реальности Частотная характеристика и выходные данные моделирования параметровВ некоторых исследованиях распределение демпфирования пьезоэлектрической пленки на поверхности маятника решено методом конечной разности во временной области, а коэффициент демпфирования пьезоэлектрической пленки маятника составляет 1,69×10-4 Н·м·с/рад, что указывает на то, что коэффициент демпфирования, полученный при идентификации АЧХ системы, имеет тот же порядок величины, что и теоретическое расчетное значение, а погрешность обусловлена демпфированием материала механической конструкции, ошибкой монтажа при монтаже и тестирование, ошибка ввода шейкера и другие факторы окружающей среды. факторы окружающей среды.2. ЗаключениеMicro-Magic Inc поставляет высокоточные кварцевые акселерометры, такие как AC-5, с небольшой погрешностью и высокой точностью, которые имеют стабильность смещения 5 мкг, повторяемость масштабного коэффициента 50 ~ 100 ppm и вес 55 г и могут быть широко распространены. используется в области бурения нефтяных скважин, систем измерения микрогравитации носителя и инерциальной навигации. AC5Большой диапазон измерений, 50 г, кварцевый маятниковый акселерометр, кварцевый гибкий акселерометр 
  • Should I choose quartz flexible accelerometer or MEMS accelerometer?
    Should I choose quartz flexible accelerometer or MEMS accelerometer? Feb 21, 2025
    Key Points Quartz Accelerometer Pros: High accuracy, stable, wide range, robust Cons: Larger, expensive, high power Best for: Precision applications (e.g., aerospace) MEMS Accelerometer Pros: Compact, low cost, low power Cons: Lower accuracy, limited range Best for: Consumer electronics, portable devices Conclusion Quartz: For high precision MEMS: For cost-effective, compact solutions Choosing between a quartz flexible accelerometer and a MEMS accelerometer depends on specific application requirements. Here are some key factors to consider:   1.       Quartz Flexible Accelerometer Advantages: 1)      High Accuracy and Stability: Quartz accelerometers are known for their high precision and long-term stability, making them suitable for applications requiring precise measurements over extended periods. 2)      Wide Dynamic Range: They can measure a wide range of accelerations, from very low to very high. 3)      Robustness: They are generally robust and can operate in harsh environments, including high temperatures and high vibration conditions. 4)      Low Noise: They typically have low noise levels, which is crucial for sensitive measurements.   Disadvantages: 1)      Size and Weight: Quartz accelerometers are generally larger and heavier compared to MEMS accelerometers. 2)      Cost: They are usually more expensive due to the complex manufacturing process and high-quality materials. 3)      Power Consumption: They tend to consume more power, which might be a concern for battery-operated devices.   2.       MEMS Accelerometer Advantages: 1)      Compact Size: MEMS accelerometers are small and lightweight, making them ideal for applications where space and weight are critical, such as in consumer electronics and portable devices. 2)      Low Cost: They are generally less expensive to produce, making them cost-effective for high-volume applications. 3)      Low Power Consumption: MEMS accelerometers consume less power, which is beneficial for battery-powered devices. 4)      Integration: They can be easily integrated with other electronic components on a single chip, enabling multifunctional devices.   Disadvantages: 1)      Lower Accuracy: MEMS accelerometers may have lower accuracy and stability compared to quartz accelerometers, especially over long periods. 2)      Limited Dynamic Range: They may not perform as well in measuring very high or very low accelerations. 3)      Environmental Sensitivity: They can be more sensitive to environmental factors such as temperature and vibration, which might affect performance.   3.       Application Considerations Ø  High-Precision Applications: If your application requires high precision, stability, and wide dynamic range (e.g., aerospace, defense, or seismic monitoring), a quartz flexible accelerometer might be the better choice. Ø  Consumer Electronics: For applications where size, weight, cost, and power consumption are critical (e.g., smartphones, wearables, IoT devices), a MEMS accelerometer is likely more suitable.   4.       Performance comparison Micro-Magic Inc provides a series of high-precision quartz accelerometers and a series of MEMS accelerometers. Taking quartz accelerometer AC-5B and MEMS accelerometer ACM-300-8 as examples, some typical parameter comparisons are as follows: Parameters AC-5 ACM-300 Measuring range ±50 g ±8 g Resolution <5μg <5 mg Bias <7 mg <50 mg Bias thermal coefficient < ±30μg/℃ 0.5 mg/℃ Scale factor thermal coefficient <50 ppm/℃ 100 ppm/℃ Bandwidth >300Hz 0~400 Hz   5.       Conclusion   Choose Quartz Flexible Accelerometer for high-precision, high-stability applications where size, weight, and cost are less critical. Choose MEMS Accelerometer for compact, cost-effective, low-power applications where high precision is not the primary concern. ACM-300 High Performance Industry Current type MEMS Accelerometer Sensor Factory   AC-5 Large Measurement Range 50g Quartz Pendulum Accelerometer Quartz Flex Accelerometer    
Subscibe To Newsletter
Пожалуйста, читайте дальше, оставайтесь в курсе, подписывайтесь, и мы будем рады, если вы поделитесь с нами своим мнением.
f y

оставить сообщение

оставить сообщение
Если вы заинтересованы в нашей продукции и хотите узнать более подробную информацию, пожалуйста, оставьте сообщение здесь, мы ответим вам, как только сможем.
представлять на рассмотрение

Дом

Продукты

WhatsApp

Связаться с нами