Продукт: Волоконно-оптический гироскоп (FOG)
Ключевые особенности:
Как и кольцевой лазерный гироскоп, волоконно-оптический гироскоп имеет такие преимущества, как отсутствие механических движущихся частей, отсутствие времени предварительного нагрева, нечувствительное ускорение, широкий динамический диапазон, цифровой выход и небольшой размер. Кроме того, оптоволоконный гироскоп также преодолевает фатальные недостатки кольцевого лазерного гироскопа, такие как высокая стоимость и явление блокировки.
Волоконно-оптический гироскоп — это разновидность оптоволоконного датчика, используемого в инерциальной навигации.
Потому что у него нет движущихся частей – высокоскоростного ротора, называемого твердотельным гироскопом. Этот новый цельнотвердый гироскоп станет ведущим продуктом в будущем и имеет широкий спектр перспектив развития и применения.
По принципу работы волоконно-оптический гироскоп можно разделить на интерферометрический волоконно-оптический гироскоп (I-FOG), резонансный волоконно-оптический гироскоп (R-FOG) и волоконно-оптический гироскоп вынужденного рассеяния Бриллюэна (B-FOG). В настоящее время наиболее развитым волоконно-оптическим гироскопом является интерферометрический волоконно-оптический гироскоп (то есть первое поколение волоконно-оптических гироскопов), который получил наиболее широкое распространение. Он использует многовитковую катушку из оптоволокна для усиления эффекта SAGNAC. Двухлучевой кольцевой интерферометр, состоящий из многовитковой катушки одномодового оптоволокна, может обеспечить высокую точность, но также неизбежно усложнит общую структуру.
Волоконно-оптические гироскопы делятся на волоконно-оптические гироскопы с открытым кольцом и волоконно-оптические гироскопы с замкнутым контуром в зависимости от типа петли. Волоконно-оптический гироскоп с разомкнутым контуром без обратной связи, непосредственное обнаружение оптического выхода, сохранение многих сложных оптических и схемных структур, преимущества простой структуры, дешевой цены, высокой надежности, низкого энергопотребления, недостатком является плохая линейность ввода-вывода. , небольшой динамический диапазон, в основном используется в качестве датчика угла. Базовая конструкция интерферометрического волоконно-оптического гироскопа с разомкнутым контуром представляет собой кольцевой двухлучевой интерферометр. В основном он используется в случаях, когда точность невысока, а объем небольшой.
В связи с быстрым развитием оптоволоконных гироскопов многие крупные компании, особенно производители военной техники, вложили огромные финансовые ресурсы в его изучение. Основные исследовательские компании США, Японии, Германии, Франции, Италии, России, гироскопы низкой и средней точности завершили индустриализацию, а США сохранили лидирующие позиции в этой области исследований.
Развитие волоконно-оптических гироскопов в нашей стране пока находится на относительно отсталом уровне. По уровню развития разработка гироскопов разделена на три эшелона: первый эшелон - США, Великобритания, Франция, они обладают всеми возможностями исследований и разработок в области гироскопов и инерциальной навигации; Второй ярус – это в основном Япония, Германия, Россия; Китай в настоящее время находится на третьем уровне. Исследования оптоволоконных гироскопов в Китае начались относительно поздно, но усилиями большинства научных исследователей постепенно сократили разрыв между нами и развитыми странами.
В настоящее время отраслевая цепочка оптоволоконных гироскопов в Китае завершена, и производителей можно найти выше и ниже по технологической цепочке, а точность разработки волоконно-оптических гироскопов достигла требований средней и низкой точности инерциальной навигационной системы. Хотя производительность относительно низкая, она не является узким местом, как чип.
Будущее развитие оптоволоконных гироскопов будет сосредоточено на следующих аспектах:
(1) Высокая точность. Более высокая точность является неизбежным требованием для оптоволоконного гироскопа, который заменит лазерный гироскоп в современной навигации. В настоящее время технология высокоточных волоконно-оптических гироскопов еще не полностью развита.
(2) Высокая стабильность и защита от помех. Долговременная высокая стабильность также является одним из направлений развития оптоволоконного гироскопа, который может сохранять точность навигации в течение длительного времени в суровых условиях окружающей среды. Это требование инерциальной навигационной системы для гироскопа. Например, в случае высокой температуры, сильного землетрясения, сильного магнитного поля и т. д. оптоволоконный гироскоп также должен иметь достаточную точность, чтобы соответствовать требованиям пользователей.
(3) Диверсификация продукции. Необходимо разрабатывать продукты с разной точностью и разными потребностями. У разных пользователей разные требования к точности навигации, а структура оптоволоконного гироскопа проста, и при изменении точности необходимо регулировать только длину и диаметр катушки. В этом отношении его преимущество состоит в том, что он превосходит механический гироскоп и лазерный гироскоп, а его различные прецизионные изделия легче получить, что является неизбежным требованием практического применения волоконно-оптического гироскопа.
(4) Масштаб производства. Снижение стоимости также является одним из предварительных условий того, чтобы оптоволоконный гироскоп был принят пользователями. Масштаб производства различных компонентов может эффективно способствовать снижению производственных затрат, особенно для оптоволоконных гироскопов средней и низкой точности.
Стабильность нулевого смещения оптоволоконного гироскопа F50 составляет 0,1–0,3 градуса/час, а стабильность нулевого смещения F60 — 0,05–0,2 градуса/час. Их области применения в основном одинаковы и могут использоваться в небольших IMU, INS, сервоприводах слежения за ракетами, фотоэлектрических модулях, БПЛА и других областях применения. Если вам нужны дополнительные технические данные, пожалуйста, свяжитесь с нами.
Xml политика конфиденциальности блог Карта сайта
Авторское право
@ Микро-Мэджик Инк Все права защищены.
ПОДДЕРЖИВАЕМАЯ СЕТЬ