Дом Гироскоп

Прецизионный анализ обнаружения деформации инженерной конструкции волоконно-оптических гироскопов

Новые продукты

Прецизионный анализ обнаружения деформации инженерной конструкции волоконно-оптических гироскопов

January 13, 2025

Ключевые моменты

Продукт: Система обнаружения деформации на основе оптоволоконного гироскопа

Ключевые особенности:

  • Компоненты: Включает высокоточные оптоволоконные гироскопы для измерения угловой скорости и расчета траектории.
  • Функция: Объединяет гироскопические данные с измерениями расстояний для обнаружения структурных деформаций с высокой точностью.
  • Применение: Подходит для гражданского строительства, мониторинга состояния конструкций и анализа деформаций мостов, зданий и других инфраструктур.
  • Производительность: обеспечивает точность обнаружения деформации более 10 мкм при скорости движения 2 м/с с использованием гироскопов средней точности.
  • Преимущества: Компактный дизайн, легкий вес, низкое энергопотребление и простота использования, обеспечивающая простоту развертывания.

Заключение:
Эта система обеспечивает точные и надежные измерения деформации, предлагая ценные решения для инженерного и структурного анализа.

1 Метод обнаружения деформаций инженерных конструкций на основе волоконно-оптического гироскопа

Принцип метода обнаружения деформаций инженерных сооружений на основе волоконно-оптического гироскопа заключается в закреплении волоконно-оптического гироскопа на устройстве обнаружения, измерении угловой скорости системы обнаружения при движении по измеряемой поверхности инженерной конструкции, измерении рабочего расстояния устройство обнаружения и рассчитать рабочую траекторию устройства обнаружения для обнаружения деформации инженерной конструкции. В данной статье этот метод называется методом траекторий. Этот метод можно описать как «двумерную плоскую навигацию», то есть положение носителя определяется по отвесу измеряемой поверхности конструкции и окончательно получается траектория носителя вдоль измеряемой поверхности конструкции.

Согласно принципу метода траектории, его основные источники ошибок включают в себя базовую ошибку, ошибку измерения расстояния и ошибку измерения угла. Эталонная ошибка относится к ошибке измерения начального угла наклона θ0, ошибка измерения расстояния относится к ошибке измерения ΔLi, а ошибка измерения угла относится к ошибке измерения Δθi, которая в основном вызвана ошибкой измерения угловая скорость оптоволоконного гироскопа. В данной статье не рассматривается влияние ошибки отсчета и ошибки измерения расстояния на ошибку обнаружения деформации, анализируется только ошибка обнаружения деформации, вызванная погрешностью волоконно-оптического гироскопа.

2 Анализ точности обнаружения деформаций на основе волоконно-оптического гироскопа

2.1 Моделирование ошибок оптоволоконного гироскопа в приложениях обнаружения деформаций

Волоконно-оптический гироскоп представляет собой датчик измерения угловой скорости на основе эффекта Саньяка. После того как свет, излучаемый источником света, проходит через Y-волновод, в оптоволокне образуются два луча света, вращающиеся в противоположных направлениях. Когда носитель вращается относительно инерционного пространства, существует оптическая разность путей между двумя лучами света, и сигнал оптической интерференции, связанный с угловой скоростью вращения, может быть обнаружен на конце детектора, чтобы измерить диагональную скорость.
Математическое выражение выходного сигнала оптоволоконного гироскопа: F=Kw+B0+V. Где F — выходная мощность гироскопа, K — масштабный коэффициент, а ω — мощность гироскопа.
Вход угловой скорости на чувствительную ось, B0 — гироскопическое смещение нуля, υ — интегральная погрешность, включая белый шум и медленно меняющиеся компоненты, вызванные различными шумами с большим временем корреляции, υ также можно рассматривать как ошибку смещения нуля. .
Источниками погрешности измерения оптоволоконного гироскопа являются ошибка масштабного коэффициента и ошибка нулевого отклонения. В настоящее время погрешность масштабного коэффициента применяемого в технике волоконно-оптического гироскопа составляет 10-5~10-6. При применении обнаружения деформации входная угловая скорость мала, а ошибка измерения, вызванная ошибкой масштабного коэффициента, намного меньше, чем ошибка, вызванная ошибкой нулевого отклонения, которую можно игнорировать. Постоянная составляющая ошибки нулевого смещения характеризуется повторяемостью нулевого смещения Br, которая представляет собой стандартное отклонение значения нулевого смещения в нескольких испытаниях. Компонент переменного тока характеризуется стабильностью нулевого смещения Bs, которая представляет собой стандартное отклонение выходного значения гироскопа от его среднего значения в одном тесте, и его значение связано со временем выборки гироскопа.

2.2 Расчет погрешности деформации на основе волоконно-оптического гироскопа

На примере простой модели опирающейся балки рассчитана ошибка обнаружения деформации и установлена теоретическая модель деформации конструкции. На основании этого устанавливается обнаружение
На основе рабочей скорости и времени выборки системы можно получить теоретическую угловую скорость оптоволоконного гироскопа. Тогда ошибка измерения угловой скорости волоконно-оптического гироскопа может быть смоделирована в соответствии с моделью ошибки нулевого отклонения волоконно-оптического гироскопа, установленной выше.

2.3 Пример моделирования моделирования

Настройка моделирования скорости движения и времени выборки использует режим изменения диапазона, то есть ΔLi, прошедшее за каждый момент выборки, является фиксированным, а время выборки того же сегмента линии изменяется путем изменения скорости движения. Например, когда ΔLi составляет 1 мм, например, скорость движения составляет 2 м/с, время выборки составляет 0,5 мс. Если рабочая скорость составляет 0,1 м/с, время выборки составляет 10 мс.

3 Связь между характеристиками оптоволоконного гироскопа и погрешностью измерения деформации

Во-первых, анализируется влияние ошибки повторяемости при нулевом смещении. Когда нет ошибки стабильности нулевого смещения, ошибка измерения угловой скорости, вызванная ошибкой нулевого смещения, фиксируется, например, чем выше скорость движения, тем короче общее время измерения, тем меньше влияние ошибки нулевого смещения, тем меньше деформация. погрешность измерения. При высокой скорости работы ошибка стабильности смещения нуля является основным фактором, вызывающим ошибку измерения системы. Когда скорость движения низкая, ошибка повторяемости нулевого смещения становится основным источником ошибки измерения системы.
При использовании типичного индекса оптоволоконного гироскопа средней точности, то есть стабильность нулевого смещения составляет 0,5 °/ч при времени выборки 1 с, повторяемость нуля составляет 0,05 °/ч. Сравните погрешности измерения системы при рабочей скорости 2 м/с, 1 м/с, 0,2 м/с, 0,1 м/с, 0,02 м/с, 0,01 м/с, 0,002 м/с и 0,001 м/с. Когда рабочая скорость составляет 2 м/с, погрешность измерения составляет 8,514 мкм (СКЗ), когда скорость измерения снижается до 0,2 м/с, погрешность измерения составляет 34,089 мкм (СКЗ), когда скорость измерения снижается до 0,002. м/с, погрешность измерения составляет 2246,222 мкм (СКЗ), как видно из результатов сравнения. Чем выше скорость движения, тем меньше погрешность измерения. Учитывая удобство инженерной эксплуатации, скорость движения 2 м/с позволяет достичь точности измерения более 10 мкм.

4 Резюме

На основе имитационного анализа измерения деформации инженерных конструкций на основе волоконно-оптического гироскопа установлена модель погрешности волоконно-оптического гироскопа, а также получена связь между погрешностью измерения деформации и характеристиками волоконно-оптического гироскопа с использованием простой опорной балки. модель как пример. Результаты моделирования показывают, что чем быстрее работает система, то есть чем короче время выборки оптоволоконного гироскопа, тем выше точность измерения деформации системы при неизменном количестве выборки и гарантированной точности определения расстояния. Благодаря типичному индексу оптоволоконного гироскопа средней точности и скорости движения 2 м/с можно достичь точности измерения деформации более 10 мкм.
Micro-Magic Inc GF-50 имеет диаметр φ50*36,5 мм и точность 0,1 градуса в час. GF-60 с точностью 0,05°/ч относится к высокому тактическому уровню оптоволоконного гироскопа. Наша компания производит гироскопы небольшого размера, легкого веса, низкого энергопотребления, быстрого запуска, простоты в эксплуатации, простоты в использовании и других характеристик, широко используется в INS, IMU, системе позиционирования, системе определения севера, стабильности платформы и других областях. Если вы заинтересованы в нашем оптоволоконном гироскопе, пожалуйста, свяжитесь с нами.

Subscibe To Newsletter
Пожалуйста, читайте дальше, оставайтесь в курсе, подписывайтесь, и мы будем рады, если вы поделитесь с нами своим мнением.
f y

оставить сообщение

оставить сообщение
Если вы заинтересованы в нашей продукции и хотите узнать более подробную информацию, пожалуйста, оставьте сообщение здесь, мы ответим вам, как только сможем.
представлять на рассмотрение

Дом

Продукты

WhatsApp

Связаться с нами