Продукт: Интегрированный оптоволоконный гироскоп на основе оптического чипа
Ключевые особенности:
Вывод: эта интегрированная конструкция открывает путь к миниатюрным и недорогим оптоволоконным гироскопам, удовлетворяя растущий спрос на компактные и надежные решения для инерциальной навигации.
Благодаря преимуществам полностью твердотельного устройства, высокой производительности и гибкой конструкции, оптоволоконный гироскоп стал основным инерционным гироскопом, который широко используется во многих областях, таких как позиционирование и навигация, управление ориентацией и измерение наклона нефтяных скважин. В новой ситуации новое поколение инерциальных навигационных систем развивается в сторону миниатюризации и дешевизны, что выдвигает все более высокие требования к комплексным характеристикам гироскопа, таким как объем, точность и стоимость. В последние годы гироскопы с полусферическим резонатором и гироскопы MEMS быстро развивались, обладая преимуществом небольшого размера, что оказывает определенное влияние на рынок оптоволоконных гироскопов. Основной проблемой уменьшения объема традиционного оптического гироскопа является уменьшение объема оптического пути. В традиционной схеме оптическая трасса волоконно-оптического гироскопа состоит из нескольких дискретных оптических устройств, каждое из которых реализовано на разных принципах и процессах и имеет самостоятельную упаковку и пигтейл. В результате объем устройства согласно предшествующему уровню техники близок к пределу уменьшения, и трудно поддерживать дальнейшее уменьшение объема оптоволоконного гироскопа. Поэтому необходимо срочно изучить новые технические решения для реализации эффективной интеграции различных функций оптического пути, значительного уменьшения объема гироскопического оптического пути, улучшения совместимости процессов и снижения себестоимости устройства.
С развитием технологии полупроводниковых интегральных схем интегральная оптическая технология постепенно достигла прорыва, размер элемента постоянно уменьшался, и он вышел на микро- и наноуровень, что значительно способствовало техническому развитию интегрированных оптических чипов и применяется в оптической связи, оптических вычислениях, оптическом зондировании и других областях. Интегрированная оптическая технология обеспечивает новое и перспективное техническое решение для миниатюризации и удешевления волоконно-оптического гирооптического тракта.
Традиционный оптический источник света (SLD или ASE), волоконно-оптический соединитель (называемый «разветвителем»), фазовый модулятор волновода Y-ветви (называемый «модулятором волновода Y»), детектор, чувствительное кольцо (волоконное кольцо). Среди них чувствительное кольцо является основным элементом чувствительной угловой скорости, и размер его объема напрямую влияет на точность гироскопа.
Мы предлагаем гибридный интегрированный чип, который состоит из компонента источника света, многофункционального компонента и компонента обнаружения посредством гибридной интеграции. Среди них часть источника света является независимым компонентом, который состоит из чипа SLD, компонента изолирующей коллимации и периферийных компонентов, таких как радиатор и полупроводниковый охладитель. Модуль обнаружения состоит из чипа обнаружения и чипа усилителя транссопротивления. Многофункциональный модуль представляет собой основной корпус гибридного интегрированного чипа, который реализован на основе тонкопленочного чипа ниобата лития (LNOI) и в основном включает в себя оптический волновод, преобразователь модового пятна, поляризатор, светоделитель, модовый аттенюатор, модулятор и другие компоненты. чиповые структуры. Луч, излучаемый чипом SLD, после изоляции и коллимации передается в волновод LNOI.
Поляризатор отклоняет входной свет, а модовый аттенюатор ослабляет нерабочую моду. После того как светоделитель разделит луч, а модулятор модулирует фазу, выходной чип попадает в чувствительное кольцо и чувствительную угловую скорость. Интенсивность света улавливается микросхемой детектора, и генерируемый фотоэлектрический выходной сигнал проходит через микросхему трансрезистивного усилителя в схему демодуляции.
Гибридный интегрированный оптический чип имеет функции люминесценции, разделения луча, объединения луча, отклонения, модуляции, обнаружения и т. д. Он реализует интеграцию «мульти-в-одном» нечувствительных функций гироскопического оптического пути. Волоконно-оптические гироскопы зависят от чувствительной угловой скорости когерентного луча с высокой степенью поляризации, а характеристики поляризации напрямую влияют на точность гироскопов. Традиционный модулятор Y-волновода сам по себе представляет собой интегрированное устройство, имеющее функции отклонения, разделения луча, объединения луча и модуляции. Благодаря методам модификации материалов, таким как обмен протонов или диффузия титана, модуляторы Y-волновода обладают чрезвычайно высокой отклоняющей способностью. Однако к тонкопленочным материалам необходимо учитывать требования к размеру, интеграции и способности к отклонению, которые невозможно удовлетворить методами модификации материала. С другой стороны, поле мод тонкопленочного оптического волновода намного меньше, чем поле моды оптического волновода из объемного материала, что приводит к изменениям в распределении электростатического поля и параметрах показателя электропреломления, и необходимо перепроектировать структуру электрода. Таким образом, поляризатор и модулятор являются основными элементами конструкции микросхемы «все в одном».
Поляризационные характеристики получены путем структурного смещения и разработан встроенный поляризатор, состоящий из изогнутого волновода и прямого волновода.
Согласованный. Изогнутый волновод может ограничить разницу между режимом передачи и режимом отсутствия передачи и добиться эффекта смещения режима. Потери при передаче режима передачи уменьшаются за счет установки смещения.
На характеристики передачи оптического волновода в основном влияют потери рассеяния, утечка мод, потери излучения и потери рассогласования мод. Теоретически потери на рассеяние и утечка мод в небольших изогнутых волноводах невелики и в основном ограничиваются поздним процессом. Однако радиационные потери изогнутых волноводов присущи и по-разному влияют на разные моды. На характеристики передачи изогнутого волновода в основном влияют потери рассогласования мод, а на стыке прямого и изогнутого волноводов наблюдается перекрытие мод, что приводит к резкому увеличению рассеяния мод. Когда световая волна передается в поляризованный волновод, из-за наличия кривизны эффективный показатель преломления моды световой волны различен в вертикальном направлении и параллельном направлении, а ограничение моды различно, что приводит к различному затуханию. эффекты для режимов TE и TM.
Следовательно, необходимо спроектировать параметры изгибающего волновода для достижения характеристик отклонения. Среди них радиус изгиба является ключевым параметром изгибаемого волновода. Потери при передаче при различных радиусах изгиба и сравнение потерь между различными режимами рассчитываются с помощью решателя собственных мод FDTD. Результаты расчетов показывают, что потери волновода уменьшаются с увеличением радиуса при малом радиусе изгиба. На этой основе рассчитывается связь между свойством поляризации (отношением моды TE к моде TM) и радиусом изгиба, причем свойство поляризации обратно пропорционально радиусу изгиба. При определении радиуса изгиба встроенного поляризатора следует учитывать теоретические расчеты, результаты моделирования, технологические возможности и фактический спрос.
Временная область с конечной разностью (FDTD) используется для моделирования поля проходящего света встроенного поляризатора. Мода TE может проходить через структуру волновода с низкими потерями, тогда как мода TM может вызывать явное затухание моды, чтобы получить поляризованный свет с высоким коэффициентом затухания. Увеличивая количество каскадных волноводов, можно дополнительно улучшить коэффициент затухания поляризации-затухания, и в микронном масштабе можно получить показатели коэффициента затухания поляризации выше -35 дБ. В то же время структура волновода на кристалле проста, что позволяет легко реализовать недорогое изготовление устройства.
Основной чип LNOI интегрированного оптического чипа представляет собой ненарезанный образец, на котором выгравированы несколько структур чипа, а размер одного основного чипа LNOI составляет 11 мм × 3 мм. Тест производительности интегрированного оптического чипа в основном включает измерение спектрального отношения, коэффициента затухания поляризации и полуволнового напряжения.
На основе интегрированного оптического чипа строится прототип гироскопа и проводится проверка работоспособности интегрированного оптического чипа. Характеристики статического нулевого смещения прототипа гироскопа на основе встроенного оптического чипа в невиброизолированном основании при комнатной температуре. основанный на наборе
Гироскоп, выполненный в виде оптического чипа, имеет длительный временной дрейф в пусковом сегменте, что в основном вызвано пусковыми характеристиками источника света и большими потерями оптической линии связи. В 90-минутном тесте стабильность нулевого смещения гироскопа составила 0,17°/ч (10 с). По сравнению с гироскопом на основе традиционных дискретных устройств показатель устойчивости нулевого смещения ухудшается на порядок, что указывает на необходимость дальнейшей оптимизации встроенного оптического чипа. Основные направления оптимизации: улучшить коэффициент затухания поляризации чипа, улучшить световую мощность светоизлучающего чипа, повысить эффективность конечного соединения чипа и уменьшить общие потери интегрированного чипа.
Мы предлагаем интегрированный оптический чип на основе LNOI, который может реализовать интеграцию нечувствительных функций, таких как люминесценция, расщепление луча, объединение луча, отклонение, модуляция и обнаружение. Стабильность нулевого смещения прототипа гироскопа на основе интегрального оптического чипа составляет 0,17°/ч. По сравнению с традиционными дискретными устройствами производительность чипа все еще имеет определенный разрыв, который необходимо дополнительно оптимизировать и улучшать. Мы предварительно изучаем возможность использования полностью интегрированных функций оптического пути, за исключением кольца, что может максимизировать ценность применения интегрированного оптического чипа в гироскопе и удовлетворить потребности в миниатюризации и низкой стоимости оптоволоконного гироскопа.
Xml политика конфиденциальности блог Карта сайта
Авторское право
@ Микро-Мэджик Инк Все права защищены.
ПОДДЕРЖИВАЕМАЯ СЕТЬ